presented by Hyo-Sung Ahn in FNT2015

Fukuoka Workshop on Nonlinear Control Theory 2015 December 13, 2015, Fukuoka, Japan

区日 Technically supported by IEEE CSS Technical Committee on Nonlinear Systems and Control

五

F

於福

岡

Stabilization of rigid formation and open problems

Hyo-Sung Ahn

Distributed Control & Autonomous Systems Lab. School of Mechatronics, Gwangju Institute of Science and Technology (GIST) 261 Cheomdan-gwagiro, Buk-gu, Gwangju, Republic of Korea

Dec. 2015

Table of contents

1 Background & problem statement

- 2 Distance-based approaches in 2D
 - A review of gradient control laws
 - Stability of formations under generalized gradient-based control laws
 - Formation control considering inter-agent distance dynamics

3 Four-agent formations in 3-D

- Regular tetrahedron shape
- General tetrahedron shape

4 Open problems

- Gradient laws: Global convergence
- Global persistence

Multi-agent systems & Distributed formation control

Agents and multi-agent systems:

- An agent is understood as a dynamical system.
- A multi-agent system is a collection, a group, or a team of dynamical systems.

Distributed formation control:

- No centralized controller for a given multi-agent system.
- Each agent has its own controller based on interaction with its neighboring agents.
- Only the distances among agents are controlled by relative interactions; \rightarrow but a formation defined w.r.t a global coordinate frame is achieved.

- Only local relative measurements
- Each node controls its neighbor edges only
- Control strategy for individual nodes?
- What are properties of graph for unique formation?

Not rigid (flex)

Distances are fixed; but configuration is changed with external forces

- Rigid
- Configuration does not change provided that the distances are fixed even with external forces

- Only distances are constrained
- Formation is fixed (rigid) or not-fixed (flex) ?

Agent model:

 $\dot{p}_i = u_i, \ i = 1, \ldots, N,$

where $p_i \in \mathbb{R}^n$ and $u_i \in \mathbb{R}^n$.

- Interaction graph: $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.
- Sensed variables:

 $p_{ji}^i = p_j^i - p_i^i, j \in \mathcal{N}_i, i \in \mathcal{V},$

where the superscript *i* denotes that the variables are with respect to the local reference frames of agent *i*, and \mathcal{N}_i is the set of all neighbors of agent *i*. • Overall task: Given $p^* = (p_1^{*T}, \dots, p_N^{*T})^T$,

 $\forall i,j \in \mathcal{V}, \ \|p_i - p_j\| \to \|p_i^* - p_j^*\|.$

Local task for agent i:

 $\forall j \in \mathcal{N}_i, \ \|p_i - p_j\| \to \|p_i^* - p_j^*\|.$

Desired invariant set:

 $E_{p^*} \triangleq \{p : ||p_i - p_j|| = ||p_i^* - p_j^*||\}.$

- Also, ensure $\dot{p}_i \rightarrow 0$ or $\dot{p}_i < \infty$.

Graph rigidity

Given an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, where $\mathcal{V} = \{1, \ldots, N\}$, let us assign $p_i \in \mathbb{R}^n$ to each vertex *i* for all $i \in \mathcal{V}$.

Realization: $p = (p_1^T, \dots, p_N^T)^T \in \mathbb{R}^{nN}$, Framework: (\mathcal{G}, p)

Equivalence: Two frameworks (\mathcal{G}, p) and (\mathcal{G}, q) are equivalent if

$$\forall (i,j) \in \mathcal{E}, \|p_i - p_j\| = \|q_i - q_j\|.$$

Congruence: Two frameworks (\mathcal{G}, p) and (\mathcal{G}, q) are congruent if

$$\forall i, j \in \mathcal{V}, \|p_i - p_j\| = \|q_i - q_j\|.$$

Definition (Rigidity)

A framework (\mathcal{G}, p) is rigid if there exists a neighborhood U_p of p such that all frameworks equivalent to (\mathcal{G}, p) are congruent in U_p .

 \mathbb{R} If (\mathcal{G},p) is rigid, then the overall task and the local tasks are consistent.

Table of contents

1 Background & problem statement

2 Distance-based approaches in 2D

- A review of gradient control laws
- Stability of formations under generalized gradient-based control laws
- Formation control considering inter-agent distance dynamics

3 Four-agent formations in 3-D

- Regular tetrahedron shape
- General tetrahedron shape

4 Open problems

- Gradient laws: Global convergence
- Global persistence

- Distance-based approaches in 2D
 - └─ A review of gradient control laws

Table of contents

1 Background & problem statement

2 Distance-based approaches in 2D

- A review of gradient control laws
- Stability of formations under generalized gradient-based control laws
- Formation control considering inter-agent distance dynamics

3 Four-agent formations in 3-D

- Regular tetrahedron shape
- General tetrahedron shape

4 Open problems

- Gradient laws: Global convergence
- Global persistence

- Distance-based approaches in 2D
 - A review of gradient control laws

Preliminaries: incident matrices

Consider an undirected graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$.

Incidence matrix: $H = [h_{ij}] \in \mathbb{R}^{|\mathcal{E}| \times |\mathcal{V}|}$

$$h_{ij} \triangleq \begin{cases} 1, & \text{if vertex } j \text{ is the sink vertex of edge } i, \\ -1, & \text{if vertex } j \text{ is the source vertex of edge } i, \\ 0, & \text{otherwise;} \end{cases}$$

- Edge partitioning: $\mathcal{E} = \mathcal{E}_+ \cup \mathcal{E}_-$, where \mathcal{E}_+ and \mathcal{E}_- are disjoint and $(i,j) \in \mathcal{E}_+$ implies $(j,i) \in \mathcal{E}_-$.
- Incidence matrix partitioning: $H = [H_+^T, -H_+^T]^T$, where H_+ is the incidence matrix corresponding to \mathcal{E}_+ .
- Link: the link $e = (e_1, \ldots, e_{M/2}) \in \mathbb{R}^{n(M/2)}$, $e_i \in \mathcal{E}_+$, of a framework (\mathcal{G}, p) is defined as $(e_k = p_i p_j; k = (i, j))$:

$$e \triangleq (H_+^T \otimes I_n)p.$$

Link space

- Notations $\hat{H}_+ = H_+ \otimes I_n$. In undirected graph (under gradient control setups), we use $\hat{H} = \hat{H}_+ = H_+ \otimes I_n = \hat{H}_- = H_- \otimes I_n$, and M/2 = m (i.e., cardinality of edges in undirected graph).
- Link space: The space $\text{Im}(H_+^T \otimes I_n)$ is referred to as the link space associated with the framework (\mathcal{G}, p) .
- Edge function: We define a function $v_{\mathcal{G}} : \operatorname{Im}(H^T_+ \otimes I_n) \to \mathbb{R}^{M/2}$ as

$$v_{\mathcal{G}}(e) \triangleq (||e_1||^2, \dots, ||e_{M/2}||^2),$$

which corresponds to the edge function $g_{\mathcal{G}}$ parameterized in the link space. That is, $g_{\mathcal{G}}(p) = v_{\mathcal{G}}((H_+^T \otimes I_n)p)$.

• Defining D as $D(e) \triangleq \text{diag}(e_1, \ldots, e_{M/2})$, we obtain

$$\frac{\partial g_{\mathcal{G}}(p)}{\partial p} = \frac{\partial v_{\mathcal{G}}(e)}{\partial e} \frac{\partial e}{\partial p} = [D(e)]^T (H_+^T \otimes I_n).$$

- Distance-based approaches in 2D
 - A review of gradient control laws

Gradient control laws - Krick, Broucke & Francis, 2009

A potential function $\phi(p)$ as a function of $g_{\mathcal{G}} - d^*$

$$\phi(p) = \frac{1}{2} \|g_{\mathcal{G}} - d^*\|$$

• With
$$u = -(\nabla \phi(p))^T$$
,

$$\dot{p} = -H_+^T J_v^T (v_{\mathcal{G}}(e) - d^*)$$

where $J_v = 2 \operatorname{diag}\{e_i^T\}$.

Control law for each agent is

$$\dot{p}_i = u_i = -\sum_{j \in \text{edges leaving } i} \frac{1}{2} (\|e_j\|^2 - d_j^*) e_j$$

- Distance-based approaches in 2D
 - A review of gradient control laws

Gradient control laws - Krick, Broucke & Francis, 2009

- The centroid $p^o = \frac{1}{n} \sum_{i=1}^{n} p_p$ is stationary: i.e., $\dot{p}^o = 0$.
- Conduct coordinate transformation

$$\tilde{p} = \begin{bmatrix} p^o \\ \bar{p} \end{bmatrix} = \mathbf{P}p \tag{1}$$

where **P** is an orthonormal matrix whose first two rows are $\frac{1}{n}\mathbf{1}^T \otimes I_2$. Equilibria

$$\begin{aligned} \mathcal{E}_1 &:= \{ p | g(p) - d^* = 0 \} = \{ p | \phi(p) = 0 \} \\ \mathcal{E}_2 &:= \{ p | J_v^T(g(p) - d^*) = 0 \} \\ \mathcal{E} &:= \{ p | \nabla \phi(p) = 0 \} \end{aligned}$$

It is noticeable that $\mathcal{E}_1 \subset \mathcal{E}_2 \subset \mathcal{E}$. The matrix H_+^T is $2n \times 2m$, so if m > n, the it has a nontrivial kernel.

- Distance-based approaches in 2D
 - A review of gradient control laws

Gradient control laws - Krick, Broucke & Francis, 2009

It is also possible to define equilibrium sets (target formations) for the reduced state \bar{p} such as

$$\bar{\mathcal{E}}_1 := \{ p \in \mathbb{R}^{2N-2} | v(\bar{H}\bar{p}) - d^* = 0 \}$$

- The advantage of using $\overline{\mathcal{E}}_1$ rather than \mathcal{E}_1 in the ensuing stability analysis is that $\overline{\mathcal{E}}_1$ is compact, whereas \mathcal{E}_1 is not.
- Key idea: Via linearization \implies Center manifold theory

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

Table of contents

1 Background & problem statement

- 2 Distance-based approaches in 2D
 - A review of gradient control laws
 - Stability of formations under generalized gradient-based control laws
 - Formation control considering inter-agent distance dynamics

3 Four-agent formations in 3-D

- Regular tetrahedron shape
- General tetrahedron shape

4 Open problems

- Gradient laws: Global convergence
- Global persistence

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

Motivation & objective

Assumptions:

- (\mathcal{G}, p^*) is infinitesimally rigid.
- Realization dimension: general *n*-dimension.
- Control law: generalized version of the gradient control law [Baillieul & Suri, 2003].

Objectives:

- Lyapunov stability analysis of rigid formations of single-integrators in *n*-dimensional space.
- Extension of the result to double-integrator formations.

—Stability of formations under generalized gradient-based control laws

Generalized gradient control law

Global potential function ϕ :

$$\phi(p) \triangleq \frac{k_p}{2} \sum_{(i,j)\in\mathcal{E}_+} \gamma\left(\|p_j - p_i\|^2 - d_{ji}^*\right),$$

where $\gamma : \mathbb{R} \to \mathbb{R}_{\geq 0}$ is positive definite and analytic in some neighborhood of 0.

Gradient control law:

$$\dot{p} = u = -\nabla\phi(p) = -k_p \left(H_+ \otimes I_n\right) D(e) \Gamma(\tilde{d}), \tag{2}$$

where
$$e \triangleq (H_+^T \otimes I_n)p$$
, $\tilde{d} = (||e_1||^2 - ||e_1^*||^2, \dots, ||e_{M/2}||^2 - ||e_{M/2}^*||^2)$ and
 $\Gamma(\tilde{d}) \triangleq \left(\frac{\partial \gamma(\tilde{d}_1)}{\partial \tilde{d}_1}, \dots, \frac{\partial \gamma(\tilde{d}_{M/2})}{\partial \tilde{d}_{M/2}}\right).$

- Stability of formations under generalized gradient-based control laws

Generalized gradient control law

The gradient system is now described in the link space as follows:

$$\dot{e} = (H_+^T \otimes I_n)\dot{p}$$

= $-k_p(H_+^T \otimes I_n)(H_+ \otimes I_n)D(e)\Gamma(\tilde{d})$

For a given realization $p^* = [p_1^{*T} \cdots p_N^{*T}]^T \in \mathbb{R}^{nN}$, we define the desired formation E_{p^*} of the agents as the set of formations that are congruent to p^* :

$$E_{p^*} := \{ p \in \mathbb{R}^{nN} : ||p_j - p_i|| = ||p_j^* - p_i^*||, \ \forall i, j \in \mathcal{V} \}.$$
(3)

Equilibrium set in position

$$E'_{p^*} = \{ p \in \mathbb{R}^{nN} : ||p_j - p_i|| = ||p_j^* - p_i^*||, \forall (i,j) \in \mathcal{E}_+ \}$$

Equilibrium set in the link space (compact)

$$E'_{e^*} = \{e \in \mathsf{Im}(H^T_+ \otimes I_n) : ||e_i|| = ||e_i^*||, \forall i = 1, \dots, m\}$$

- Stability of formations under generalized gradient-based control laws

Generalized gradient control law

- Main idea: $E'_{e^*} \Rightarrow E'_{p^*} \Rightarrow E_{p^*}$ or $E'_{e^*} \Rightarrow E'_{p^*} \Leftrightarrow E_{p^*}$ or $E'_{e^*} \Leftrightarrow E'_{p^*} \Leftrightarrow E_{p^*}$
- To analyze the stability of E'_{e^*} , we define $V: \operatorname{Im}(H^T_+ \otimes I_n) \to \overline{\mathbb{R}}_+$ as

$$V(e) := \sum_{i=1}^{M} \frac{1}{2} \gamma \left(\|e_i\|^2 - \|e_i^*\|^2 \right).$$

The time-derivative of V can be arranged as

$$\dot{V}(e) = \frac{\partial V(e)}{\partial e} \dot{e} = -k_p \frac{\partial V(e)}{\partial e} (H_+^T \otimes I_n) (H_+ \otimes I_n) D(e) \Gamma(\tilde{d})$$

$$= -k_p \left[D(e) \Gamma(\tilde{d}) \right]^T (H_+ \otimes I_n)^T \underbrace{(H_+ \otimes I_n) D(e) \Gamma(\tilde{d})}_{= -[\nabla \phi(p)]^T} \underbrace{(H_+ \otimes I_n) D(e) \Gamma(\tilde{d})}_{= -\nabla \phi(p)}$$

$$= -k_p \|\nabla \phi(p)\|^2 \le 0,$$

which shows the local stability of E'_{e^*} .

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

Then the local asymptotic stability of E'_{e*} can be ensured by showing the existence of a neighborhood U_{E'_{e*}} of E'_{e*} such that, for any e ∈ U_{E'_{e*}}, if e ∉ E_{e*} (or, e ∉ E'_{e*}), then V(e) < 0.</p>

Theorem

(Lojasiewicz's inequality) Suppose that $f : D \subseteq \mathbb{R}^{n_f} \to \mathbb{R}$ is a real analytic function in a neighborhood of $z \in D$. There exist constants $k_f > 0$ and $\rho_f \in [0, 1)$ such that

$$\|\nabla f(x)\| \ge k_f \|f(x) - f(z)\|^{\rho_f}$$

in some neighborhood of *z*.

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

Lemma

For any $\overline{p} \in E'_{p^*}$, there exists a neighborhood $U_{\overline{p}}$ of \overline{p} such that, for any $p \in U_{\overline{p}}$ and $p \notin E'_{p^*}$, $\|\nabla \phi(p)\| > 0$.

Proof.

Since γ is analytic in some neighborhood of 0, for any $\bar{p} \in E'_{p^*}$, there exists a neighborhood of \bar{p} such that ϕ is analytic in the neighborhood. Thus it follows from *Theorem 2* that there exist $k_{\phi} > 0$, $\rho_{\phi} \in [0, 1)$, and a neighborhood $U_{\bar{p}}$ of \bar{p} such that

$$\|\nabla \phi(p)\| \ge k_{\phi} \|\phi(p) - \phi(\bar{p})\|^{\rho_{\phi}} = k_{\phi} \|\phi(p)\|^{\rho_{\phi}}.$$

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

Lemma

For any $\overline{p} \in E'_{p^*}$, there exists a neighborhood $U_{\overline{p}}$ of \overline{p} such that, for any $p \in U_{\overline{p}}$ and $p \notin E'_{p^*}$, $\|\nabla \phi(p)\| > 0$.

Proof.

Since γ is analytic in some neighborhood of 0, for any $\bar{p} \in E'_{p^*}$, there exists a neighborhood of \bar{p} such that ϕ is analytic in the neighborhood. Thus it follows from *Theorem 2* that there exist $k_{\phi} > 0$, $\rho_{\phi} \in [0, 1)$, and a neighborhood $U_{\bar{p}}$ of \bar{p} such that

$$\|\nabla \phi(p)\| \ge k_{\phi} \|\phi(p) - \phi(\bar{p})\|^{\rho_{\phi}} = k_{\phi} \|\phi(p)\|^{\rho_{\phi}}.$$

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

Lemma

For any $\overline{p} \in E'_{p^*}$, there exists a neighborhood $U_{\overline{p}}$ of \overline{p} such that, for any $p \in U_{\overline{p}}$ and $p \notin E'_{p^*}$, $\|\nabla \phi(p)\| > 0$.

Proof.

Since γ is analytic in some neighborhood of 0, for any $\bar{p} \in E'_{p^*}$, there exists a neighborhood of \bar{p} such that ϕ is analytic in the neighborhood. Thus it follows from *Theorem 2* that there exist $k_{\phi} > 0$, $\rho_{\phi} \in [0, 1)$, and a neighborhood $U_{\bar{p}}$ of \bar{p} such that

$$\|\nabla \phi(p)\| \ge k_{\phi} \|\phi(p) - \phi(\bar{p})\|^{\rho_{\phi}} = k_{\phi} \|\phi(p)\|^{\rho_{\phi}}.$$

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

Lemma

For any $\overline{p} \in E'_{p^*}$, there exists a neighborhood $U_{\overline{p}}$ of \overline{p} such that, for any $p \in U_{\overline{p}}$ and $p \notin E'_{p^*}$, $\|\nabla \phi(p)\| > 0$.

Proof.

Since γ is analytic in some neighborhood of 0, for any $\bar{p} \in E'_{p^*}$, there exists a neighborhood of \bar{p} such that ϕ is analytic in the neighborhood. Thus it follows from *Theorem 2* that there exist $k_{\phi} > 0$, $\rho_{\phi} \in [0, 1)$, and a neighborhood $U_{\bar{p}}$ of \bar{p} such that

$$\|\nabla \phi(p)\| \ge k_{\phi} \|\phi(p) - \phi(\bar{p})\|^{\rho_{\phi}} = k_{\phi} \|\phi(p)\|^{\rho_{\phi}}.$$

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

The local asymptotic stability of E'_{p^*} is then ensured based on *Lemma 6* as follows:

Theorem

The set E'_{p^*} is locally asymptotically stable with respect to (2).

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

We prove this theorem by showing that E'_{e^*} is locally asymptotically stable. To show the local asymptotic stability of E'_{e^*} , we construct a neighborhood of E'_{e^*} such that $\dot{V}(e) \ge 0$ for any e in the neighborhood and $\dot{V}(e) = 0$ if and only if $e \in E'_{e^*}$. It follows from l emma 6 that, for any $\bar{p} \in E'$, there exists a neighborhood

It follows from Lemma 6 that, for any $\bar{p} \in E'_{p^*}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that $\|\nabla \phi(p)\| > 0$ for all $p \in U_{\bar{p}}$ and $p \notin E'_{p^*}$. We take $r_p^* > 0$ such that

$$D_{r_p^*} := \{ p \in \mathbb{R}^{nN} : \| p - \bar{p} \| < r_p^* \} \subseteq U_{\bar{p}}.$$

Define

$$U_{E'_{e^*}}(r_e) := \{ e \in \text{Im}(H^T_+ \otimes I_n) : \inf_{\eta \in E'_{e^*}} \| e - \eta \| < r_e \}.$$

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

We prove this theorem by showing that E'_{e^*} is locally asymptotically stable. To show the local asymptotic stability of E'_{e^*} , we construct a neighborhood of E'_{e^*} such that $\dot{V}(e) \ge 0$ for any e in the neighborhood and $\dot{V}(e) = 0$ if and only if $e \in E'_{e^*}$.

It follows from Lemma 6 that, for any $\bar{p} \in E'_{p^*}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that $\|\nabla \phi(p)\| > 0$ for all $p \in U_{\bar{p}}$ and $p \notin E'_{p^*}$. We take $r_p^* > 0$ such that

$$D_{r_p^*} := \{ p \in \mathbb{R}^{nN} : \| p - \bar{p} \| < r_p^* \} \subseteq U_{\bar{p}}.$$

Define

$$U_{E'_{e^*}}(r_e) := \{ e \in \text{Im}(H^T_+ \otimes I_n) : \inf_{\eta \in E'_{e^*}} \|e - \eta\| < r_e \}.$$

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

We prove this theorem by showing that E'_{e^*} is locally asymptotically stable. To show the local asymptotic stability of E'_{e^*} , we construct a neighborhood of E'_{e^*} such that $\dot{V}(e) \ge 0$ for any e in the neighborhood and $\dot{V}(e) = 0$ if and only if $e \in E'_{e^*}$. It follows from *Lemma 6* that, for any $\bar{p} \in E'_{p^*}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that $\|\nabla \phi(p)\| > 0$ for all $p \in U_{\bar{p}}$ and $p \notin E'_{p^*}$. We take $r^*_p > 0$

such that

$$D_{r_p^*} := \{ p \in \mathbb{R}^{nN} : \| p - \bar{p} \| < r_p^* \} \subseteq U_{\bar{p}}.$$

Define

$$U_{E'_{e^*}}(r_e) := \{ e \in \text{Im}(H^T_+ \otimes I_n) : \inf_{\eta \in E'_{e^*}} \| e - \eta \| < r_e \}.$$

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

We prove this theorem by showing that E'_{e^*} is locally asymptotically stable. To show the local asymptotic stability of E'_{e^*} , we construct a neighborhood of E'_{e^*} such that $\dot{V}(e) \ge 0$ for any e in the neighborhood and $\dot{V}(e) = 0$ if and only if $e \in E'_{e^*}$.

It follows from Lemma 6 that, for any $\bar{p} \in E'_{p^*}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that $\|\nabla \phi(p)\| > 0$ for all $p \in U_{\bar{p}}$ and $p \notin E'_{p^*}$. We take $r_p^* > 0$ such that

$$D_{r_p^*} := \{ p \in \mathbb{R}^{nN} : \| p - \bar{p} \| < r_p^* \} \subseteq U_{\bar{p}}.$$
(4)

Define

$$U_{E'_{e^*}}(r_e) := \{ e \in \operatorname{Im}(H^T_+ \otimes I_n) : \inf_{\eta \in E'_{e^*}} \| e - \eta \| < r_e \}.$$

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

(Cont.) Then, for any $e \in U_{E'_{e^*}}(r^*_e)$, there exists $\overline{e} \in E'_{e^*}$ such that

$$\inf_{\eta \in E'_{e^*}} \|e - \eta\| = \|e - \bar{e}\| < r_e^*$$

because E'_{e^*} is compact and $||e - \eta||$ is a continuous function of η . From the fact that $(e - \overline{e}) \in \text{Im}(H^T_+ \otimes I_n)$, there always exist $p \in \mathbb{R}^{nN}$ and $\overline{p} \in E'_{p^*}$ such that $(H^T_+ \otimes I_n)(p - \overline{p}) = e - \overline{e}$ and $(p - \overline{p}) \in \text{Im}(H^T_+ \otimes I_n)$. Since $p - \overline{p}$ belongs to the row space of $H^T_+ \otimes I_n$, we obtain

$$\sigma_{\min}(H_+^T \otimes I_n) \| p - \bar{p} \| \le \| e - \bar{e} \|$$

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

(Cont.) Then, for any $e \in U_{E'_{e^*}}(r^*_e)$, there exists $\overline{e} \in E'_{e^*}$ such that

$$\inf_{\eta \in E'_{e^*}} \|e - \eta\| = \|e - \bar{e}\| < r_e^*$$

because E'_{e^*} is compact and $||e - \eta||$ is a continuous function of η . From the fact that $(e - \overline{e}) \in \text{Im}(H^T_+ \otimes I_n)$, there always exist $p \in \mathbb{R}^{nN}$ and $\overline{p} \in E'_{p^*}$ such that $(H^T_+ \otimes I_n)(p - \overline{p}) = e - \overline{e}$ and $(p - \overline{p}) \in \text{Im}(H^T_+ \otimes I_n)$. Since $p - \overline{p}$ belongs to the row space of $H^T_+ \otimes I_n$, we obtain

$$\sigma_{\min}(H_+^T \otimes I_n) \| p - \bar{p} \| \le \| e - \bar{e} \|$$

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

(Cont.) Then, for any $e \in U_{E'_{e^*}}(r^*_e)$, there exists $\overline{e} \in E'_{e^*}$ such that

$$\inf_{\eta \in E'_{e^*}} \|e - \eta\| = \|e - \bar{e}\| < r^*_e$$

because E'_{e^*} is compact and $||e - \eta||$ is a continuous function of η . From the fact that $(e - \overline{e}) \in \text{Im}(H^T_+ \otimes I_n)$, there always exist $p \in \mathbb{R}^{nN}$ and $\overline{p} \in E'_{p^*}$ such that $(H^T_+ \otimes I_n)(p - \overline{p}) = e - \overline{e}$ and $(p - \overline{p}) \in \text{Im}(H^T_+ \otimes I_n)$. Since $p - \overline{p}$ belongs to the row space of $H^T_+ \otimes I_n$, we obtain

$$\sigma_{min}(H_+^T \otimes I_n) \| p - \bar{p} \| \le \| e - \bar{e} \|$$

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

(Cont.) Then, for any $e \in U_{E'_{e^*}}(r^*_e)$, there exists $\overline{e} \in E'_{e^*}$ such that

$$\inf_{\eta \in E'_{e^*}} \|e - \eta\| = \|e - \bar{e}\| < r_e^*$$

because E'_{e^*} is compact and $||e - \eta||$ is a continuous function of η . From the fact that $(e - \overline{e}) \in \text{Im}(H^T_+ \otimes I_n)$, there always exist $p \in \mathbb{R}^{nN}$ and $\overline{p} \in E'_{p^*}$ such that $(H^T_+ \otimes I_n)(p - \overline{p}) = e - \overline{e}$ and $(p - \overline{p}) \in \text{Im}(H^T_+ \otimes I_n)$. Since $p - \overline{p}$ belongs to the row space of $H^T_+ \otimes I_n$, we obtain

$$\sigma_{\min}(H_+^T \otimes I_n) \| p - \bar{p} \| \le \| e - \bar{e} \|$$
- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

(Cont.) Then, for any $e \in U_{E'_{e^*}}(r^*_e)$, there exists $\overline{e} \in E'_{e^*}$ such that

$$\inf_{\eta \in E'_{e^*}} \|e - \eta\| = \|e - \bar{e}\| < r_e^*$$

because E'_{e^*} is compact and $||e - \eta||$ is a continuous function of η . From the fact that $(e - \overline{e}) \in \text{Im}(H^T_+ \otimes I_n)$, there always exist $p \in \mathbb{R}^{nN}$ and $\overline{p} \in E'_{p^*}$ such that $(H^T_+ \otimes I_n)(p - \overline{p}) = e - \overline{e}$ and $(p - \overline{p}) \in \text{Im}(H^T_+ \otimes I_n)$. Since $p - \overline{p}$ belongs to the row space of $H^T_+ \otimes I_n$, we obtain

$$\sigma_{min}(H_+^T \otimes I_n) \| p - \bar{p} \| \le \| e - \bar{e} \|$$

Thus we have $||p - \bar{p}|| \leq \frac{||e - \bar{e}||}{\sigma_{\min}(H_+^T \otimes I_n)} < r_p^*$, which implies that $p \in U_{\bar{p}}$ from (4). It follows from *Lemma 6* that if $e \notin E'_{e^*}$, $\dot{V}(e) = -k_p ||\nabla \phi(p)||^2 < 0$, which implies that E'_{e^*} is locally asymptotically stable. Thus E'_{p^*} is locally asymptotically stable with respect to (2).

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

(Cont.) Then, for any $e \in U_{E'_{e^*}}(r^*_e)$, there exists $\overline{e} \in E'_{e^*}$ such that

$$\inf_{\eta \in E'_{e^*}} \|e - \eta\| = \|e - \bar{e}\| < r_e^*$$

because E'_{e^*} is compact and $||e - \eta||$ is a continuous function of η . From the fact that $(e - \overline{e}) \in \text{Im}(H^T_+ \otimes I_n)$, there always exist $p \in \mathbb{R}^{nN}$ and $\overline{p} \in E'_{p^*}$ such that $(H^T_+ \otimes I_n)(p - \overline{p}) = e - \overline{e}$ and $(p - \overline{p}) \in \text{Im}(H^T_+ \otimes I_n)$. Since $p - \overline{p}$ belongs to the row space of $H^T_+ \otimes I_n$, we obtain

$$\sigma_{min}(H_+^T \otimes I_n) \| p - \bar{p} \| \le \| e - \bar{e} \|$$

Thus we have $||p - \bar{p}|| \leq \frac{||e - \bar{e}||}{\sigma_{\min}(H_+^T \otimes I_n)} < r_p^*$, which implies that $p \in U_{\bar{p}}$ from (4). It follows from *Lemma 6* that if $e \notin E'_{e^*}$, $\dot{V}(e) = -k_p ||\nabla \phi(p)||^2 < 0$, which implies that E'_{e^*} is locally asymptotically stable. Thus E'_{p^*} is locally asymptotically stable with respect to (2).

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

Stability analysis

Theorem

If (\mathcal{G}, p^*) is rigid, the set E_{p^*} is locally asymptotically stable with respect to (2).

Proof.

From *Theorem 7*, E'_{p^*} is locally asymptotically stable. Since (\mathcal{G}, p^*) is rigid, it follows from the definition of the graph rigidity that, for any $\bar{p} \in E_{p^*}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that $E_{p^*} \cap U_{\bar{p}} = E'_{p^*} \cap U_{\bar{p}}$. This implies that E_{p^*} is locally asymptotically stable with respect to (2).

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

Stability analysis

Theorem

If (\mathcal{G}, p^*) is rigid, the set E_{p^*} is locally asymptotically stable with respect to (2).

Proof.

From *Theorem 7*, E'_{p^*} is locally asymptotically stable. Since (\mathcal{G}, p^*) is rigid, it follows from the definition of the graph rigidity that, for any $\bar{p} \in E_{p^*}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that $E_{p^*} \cap U_{\bar{p}} = E'_{p^*} \cap U_{\bar{p}}$. This implies that E_{p^*} is locally asymptotically stable with respect to (2).

- Distance-based approaches in 2D
 - Stability of formations under generalized gradient-based control laws

Stability analysis

Theorem

If (\mathcal{G}, p^*) is rigid, the set E_{p^*} is locally asymptotically stable with respect to (2).

Proof.

From *Theorem 7*, E'_{p^*} is locally asymptotically stable. Since (\mathcal{G}, p^*) is rigid, it follows from the definition of the graph rigidity that, for any $\bar{p} \in E_{p^*}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that $E_{p^*} \cap U_{\bar{p}} = E'_{p^*} \cap U_{\bar{p}}$. This implies that E_{p^*} is locally asymptotically stable with respect to (2).

- Distance-based approaches in 2D
 - Formation control considering inter-agent distance dynamics

Table of contents

1 Background & problem statement

2 Distance-based approaches in 2D

- A review of gradient control laws
- Stability of formations under generalized gradient-based control laws
- Formation control considering inter-agent distance dynamics

3 Four-agent formations in 3-D

- Regular tetrahedron shape
- General tetrahedron shape

4 Open problems

- Gradient laws: Global convergence
- Global persistence

- Distance-based approaches in 2D
 - Formation control considering inter-agent distance dynamics

Main idea

- Edges (inter-agent distances) are analyzed as control inputs
- Then, the control inputs for edges are separated into neighbor agents

— Distance-based approaches in 2D

— Formation control considering inter-agent distance dynamics

Inter-agent distance dynamics

The time-derivative of $d_{ij} (\triangleq ||p_i - p_j||^2)$ for any $(i, j) \in \mathcal{E}$:

$$\dot{d}_{ij} = \frac{d}{dt}(\|p_i - p_j\|^2) = \underbrace{2(p_i - p_j)^T(u_i - u_j)}_{\text{(u_i - u_j)}}.$$

Virtual control law $u_{ij} \triangleq$

Design procedure

(1) Design u_{ij} to stabilize d_{ij} such that $d_{ij} \rightarrow d_{ij}^*$; (2) Then design u_i and u_j to implement u_{ij} .

Virtual control input design:

$$u_{ij} = -k_d(d_{ij} - d_{ij}^*) \Longrightarrow d_{ij}(t) = e^{-k_d t} d_{ij}^0 + (1 - e^{-k_d t}) d_{ij}^*.$$

Virtual control law vs. control law for the agents,

$$u_{ij} = \underbrace{2(p_i - p_j)^T(u_i - u_j)}_{-k_d d_{ij}} = \underbrace{-k_d d_{ij}}_{-k_d d_{ij}}, \ \tilde{d}_{ij} = d_{ij} - d_{ij}^*.$$

- Distance-based approaches in 2D
 - Formation control considering inter-agent distance dynamics

Three-agent case

Proposed control law for three-agent case:

$$\begin{array}{l}
4(p_j - p_i)^T u_i = k_d \tilde{d}_{ij}, \\
4(p_i - p_j)^T u_j = k_d \tilde{d}_{ij} \\
A_i \triangleq
\end{array} \Rightarrow \underbrace{\left(\begin{array}{c} (p_j - p_i)^T \\ (p_k - p_i)^T \end{array}\right)}_{A_i \triangleq} u_i = \frac{k_d}{4} \underbrace{\left(\begin{array}{c} \tilde{d}_{ij} \\ \tilde{d}_{ik} \end{array}\right)}_{b_i \triangleq} \Rightarrow u_i = \frac{k_d}{4} A_i^{-1} b_i.
\end{array}$$

Theorem

For three-agents in the plane, if p^0 and p^* are not collinear, then

- the proposed control law is nonsingular;
- the invariant set E_p^* is globally asymptotically stable;
- \tilde{d}_{ij} for all $(i,j) \in \mathcal{E}$ exponentially and monotonically converge to zero.

- Distance-based approaches in 2D
 - Formation control considering inter-agent distance dynamics

Given $d = (\dots, d_{ij}, \dots)$ for all $(i, j) \in \mathcal{E}$, (\mathcal{G}, d) is realizable if there exists a realization $(p_1^T, \dots, p_N^T)^T \in \mathbb{R}^{nN}$ such that $\forall i, j \in \mathcal{V}, \|p_i - p_j\|^2 = d_{ij}$.

Realizability problem

 (\mathcal{G}, d^0) and (\mathcal{G}, d^*) is realizable in two-dimension $\Rightarrow (\mathcal{G}, \alpha d^0 + (1 - \alpha)d^*)$, where $0 \le \alpha \le 1$, is realizable in at most four-dimension [Havel *et al.*, 1983]. \bowtie No control law such that $u_{ij} = -k_d(d_{ij} - d^*_{ij})$.

The virtual control law $u_{ij} = -k_d(d_{ij} - d^*_{ij})$ gives rise to a possibly over-determined system of linear equations

$$\underbrace{\left(\begin{array}{c} (p_j - p_i)^T \\ \vdots \end{array}\right)}_{A_i \triangleq} u_i = \frac{k_d}{4} \underbrace{\left(\begin{array}{c} \vdots \\ \tilde{d}_{ij} \\ \vdots \end{array}\right)}_{b_i \triangleq}, \ j \in \mathcal{N}_i,$$

Projection of $\frac{k_d}{4}b_i$ to the column space of A_i \Leftrightarrow Projection of the realization of $(\mathcal{G}, \alpha d^0 + (1 - \alpha)d^*)$ to the plane

- Distance-based approaches in 2D
 - Formation control considering inter-agent distance dynamics

Proposed control law:

$$A_{i}u_{i} = \frac{k_{d}}{4}b_{i}$$

$$\Rightarrow u_{i} = \underset{u_{i} \in \mathbb{R}^{2}}{\operatorname{argmin}} \|A_{i}u_{i} - \frac{k_{d}}{4}b_{i}\|^{2}$$

$$\Rightarrow u_{i} = \frac{k_{d}}{4}(A_{i}^{T}A_{i})^{-1}A_{i}^{T}b_{i} \qquad (5)$$

Lemma

(Used for ensuring existence of control input) For *N*-agents, if (\mathcal{G}, p) is infinitesimally rigid in the plane, then the proposed control law is nonsingular.

ŀ

Column space of A_i

- Distance-based approaches in 2D
 - Formation control considering inter-agent distance dynamics

Due to the infinitesimal rigidity of (\mathcal{G}, p) , the first leading principal minor of $A_i^{\mathsf{T}}A_i$ is positive: $\sum_{j \in \mathcal{N}_i} (x_j - x_i)^2 > 0$ for all $i \in \mathcal{V}$. Since $N \ge 3$ and agent *i* has at least two neighboring agents due to the rigidity of (\mathcal{G}, p) , the second leading principal minor of $A_i^{\mathsf{T}}A_i$ is also positive by the Cauchy-Schwarz inequality:

$$\sum_{j\in\mathcal{N}_i}(x_j-x_i)^2\sum_{j\in\mathcal{N}_i}(y_j-y_i)^2-\left(\sum_{j\in\mathcal{N}_i}(x_j-x_i)(y_j-y_i)\right)^2>0.$$

The second leading principal minor of $A_i^T A_i$ is zero if and only if $(\ldots, x_j - x_i, \ldots)$ and $(\ldots, y_j - y_i, \ldots), j \in \mathcal{N}_i$, are linearly dependent, which implies that p_i and $p_j, j \in \mathcal{N}_i$, are collinear. It then follows from Sylvester's criterion that $A_i^T A_i$ is positive definite. Thus $(A_i^T A_i)^{-1}$ is positive definite by the positive definiteness of $A_i^T A_i$.

- Distance-based approaches in 2D
 - —Formation control considering inter-agent distance dynamics

Lemma

(Used for proving negative definiteness of the derivative of Lyapunov function) Given an *N*-agent group, if (\mathcal{G}, p^*) is infinitesimally rigid, then there exists a level set $\Omega_c = \{e : V(e) \le c\}$ such that $(R_{gg}(e))^T R_{gg}(e)$ is positive definite for any $e \in \Omega_c$ and $(R_{gg}(e))^T \tilde{d} \ne 0$ for any $e \in \Omega_c$ and $e \notin E_e$.

Proof.

First, due to the infinitesimal rigidity of (\mathcal{G}, p^*) , if a point p is sufficiently close to E_p , then (\mathcal{G}, p) is infinitesimally rigid, which, together with *Lemma 12*, implies that $(R_{g_{\mathcal{G}}}(p))^{\mathsf{T}}R_{g_{\mathcal{G}}}(p)$ is positive definite. Thus there exists a positive constant ρ_{max} such that if $\rho_{max} \ge \rho > 0$, then $(R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}R_{g_{\mathcal{G}}}(e)$ is positive definite for any $e \in \Omega_{\rho} = \{e : V(e) \le \rho\}$.

- Distance-based approaches in 2D
 - Formation control considering inter-agent distance dynamics

Lemma

(Used for proving negative definiteness of the derivative of Lyapunov function) Given an *N*-agent group, if (\mathcal{G}, p^*) is infinitesimally rigid, then there exists a level set $\Omega_c = \{e : V(e) \le c\}$ such that $(R_{gg}(e))^T R_{gg}(e)$ is positive definite for any $e \in \Omega_c$ and $(R_{gg}(e))^T \tilde{d} \ne 0$ for any $e \in \Omega_c$ and $e \notin E_e$.

Proof.

First, due to the infinitesimal rigidity of (\mathcal{G}, p^*) , if a point p is sufficiently close to E_p , then (\mathcal{G}, p) is infinitesimally rigid, which, together with *Lemma 12*, implies that $(R_{g_{\mathcal{G}}}(p))^{\mathsf{T}}R_{g_{\mathcal{G}}}(p)$ is positive definite. Thus there exists a positive constant ρ_{max} such that if $\rho_{max} \ge \rho > 0$, then $(R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}R_{g_{\mathcal{G}}}(e)$ is positive definite for any $e \in \Omega_{\rho} = \{e : V(e) \le \rho\}$.

- Distance-based approaches in 2D
 - Formation control considering inter-agent distance dynamics

(Cont.) Second, since $\phi(p)$, which is the potential function, is a real analytic function in some neighborhood of any $\bar{p} \in E_p$, it follows from *Theorem 2* that there exist a neighborhood $\mathcal{U}_{\bar{p}}$ of \bar{p} and constants $k_{\bar{p}} > 0$ and $\rho_{\bar{p}} \in [0, 1)$ such that

$$\|\nabla \phi(p)\| = \| - k_g (R_{g_{\mathcal{G}}}(p))^{\mathsf{T}} \tilde{d}\| \ge k_{\bar{p}} \|\phi(p) - \phi(\bar{p})\|^{\rho_{\bar{p}}}$$

for all $p \in \mathcal{U}_{\overline{p}}$. Since $\phi(p) = 0$ only if $p \in E_p$,

$$|k_{g}(R_{g_{\mathcal{G}}}(p))^{\mathsf{T}}\tilde{d}|| \ge k_{\bar{p}} \|\phi(p)\|^{\rho_{\bar{p}}} > 0$$
(6)

for all $p \in U_{\overline{p}}$ and $p \notin E_p$. Then, for any $\overline{e} \in E_e$, we can take a neighborhood $U_{\overline{e}}$ of \overline{e} such that

 $\|(R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}\tilde{d}\|>0$

for all $e \in U_{\overline{e}}$ and $e \notin E_e$.

- Distance-based approaches in 2D
 - Formation control considering inter-agent distance dynamics

(Cont.) Second, since $\phi(p)$, which is the potential function, is a real analytic function in some neighborhood of any $\bar{p} \in E_p$, it follows from *Theorem 2* that there exist a neighborhood $\mathcal{U}_{\bar{p}}$ of \bar{p} and constants $k_{\bar{p}} > 0$ and $\rho_{\bar{p}} \in [0, 1)$ such that

$$\|\nabla \phi(p)\| = \| - k_g(R_{g_{\mathcal{G}}}(p))^{\mathsf{T}}\tilde{d}\| \ge k_{\bar{p}} \|\phi(p) - \phi(\bar{p})\|^{\rho_{\bar{p}}}$$

for all $p \in \mathcal{U}_{\overline{p}}$. Since $\phi(p) = 0$ only if $p \in E_p$,

$$|k_{g}(R_{g_{\mathcal{G}}}(p))^{\mathsf{T}}\tilde{d}|| \ge k_{\bar{p}} ||\phi(p)||^{\rho_{\bar{p}}} > 0$$
(7)

for all $p \in U_{\overline{p}}$ and $p \notin E_p$. Then, for any $\overline{e} \in E_e$, we can take a neighborhood $U_{\overline{e}}$ of \overline{e} such that

 $\|(R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}\tilde{d}\|>0$

for all $e \in U_{\overline{e}}$ and $e \notin E_e$.

- Distance-based approaches in 2D
 - Formation control considering inter-agent distance dynamics

(Cont.) Second, since $\phi(p)$, which is the potential function, is a real analytic function in some neighborhood of any $\bar{p} \in E_p$, it follows from *Theorem 2* that there exist a neighborhood $\mathcal{U}_{\bar{p}}$ of \bar{p} and constants $k_{\bar{p}} > 0$ and $\rho_{\bar{p}} \in [0, 1)$ such that

$$\|\nabla \phi(p)\| = \| - k_g (R_{g_{\mathcal{G}}}(p))^{\mathsf{T}} \tilde{d}\| \ge k_{\bar{p}} \|\phi(p) - \phi(\bar{p})\|^{\rho_{\bar{p}}}$$

for all $p \in U_{\overline{p}}$. Since $\phi(p) = 0$ only if $p \in E_p$,

$$\|k_{g}(R_{g_{\mathcal{G}}}(p))^{\mathsf{T}}\tilde{d}\| \ge k_{\bar{p}}\|\phi(p)\|^{\rho_{\bar{p}}} > 0$$
(8)

for all $p \in U_{\overline{p}}$ and $p \notin E_p$. Then, for any $\overline{e} \in E_e$, we can take a neighborhood $U_{\overline{e}}$ of \overline{e} such that

$$\|(R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}\tilde{d}\| > 0 \tag{9}$$

for all $e \in U_{\overline{e}}$ and $e \notin E_e$.

- Distance-based approaches in 2D
 - —Formation control considering inter-agent distance dynamics

(Cont.) Third, due to the compactness of E_e , there exists a finite open cover $\mathcal{U}_{E_e} = \bigcup_{k=1}^{n_e} \mathcal{U}_{\overline{e}_k}$ such that (9) holds for all $e \in \mathcal{U}_{E_e}$ and $e \notin E_e$. That is, for any $k \in \{1, \ldots, n_e\}$, if $e \in \mathcal{U}_{\overline{e}_k}$ and $e \notin E_e$, then (9) holds. Taking \mathcal{U}_{E_e} and c such that $\Omega_c \subseteq \mathcal{U}_{E_e}$ and $c \leq \rho_{max}$ ensures that $(R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}R_{g_{\mathcal{G}}}(e)$ is positive definite for any $e \in \Omega_c$ and $(R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}\tilde{d} \neq 0$ for any $e \in \Omega_c$ and $e \notin E_e$.

- Distance-based approaches in 2D
 - —Formation control considering inter-agent distance dynamics

(Cont.) Third, due to the compactness of E_e , there exists a finite open cover $\mathcal{U}_{E_e} = \bigcup_{k=1}^{n_e} \mathcal{U}_{\overline{e}_k}$ such that (9) holds for all $e \in \mathcal{U}_{E_e}$ and $e \notin E_e$. That is, for any $k \in \{1, \ldots, n_e\}$, if $e \in \mathcal{U}_{\overline{e}_k}$ and $e \notin E_e$, then (9) holds. Taking \mathcal{U}_{E_e} and c such that $\Omega_c \subseteq \mathcal{U}_{E_e}$ and $c \leq \rho_{max}$ ensures that $(R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}R_{g_{\mathcal{G}}}(e)$ is positive definite for any $e \in \Omega_c$ and $(R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}\tilde{d} \neq 0$ for any $e \in \Omega_c$ and $e \notin E_e$.

- Distance-based approaches in 2D
 - —Formation control considering inter-agent distance dynamics

(Cont.) Third, due to the compactness of E_e , there exists a finite open cover $\mathcal{U}_{E_e} = \bigcup_{k=1}^{n_e} \mathcal{U}_{\bar{e}_k}$ such that (9) holds for all $e \in \mathcal{U}_{E_e}$ and $e \notin E_e$. That is, for any $k \in \{1, \ldots, n_e\}$, if $e \in \mathcal{U}_{\bar{e}_k}$ and $e \notin E_e$, then (9) holds. Taking \mathcal{U}_{E_e} and c such that $\Omega_c \subseteq \mathcal{U}_{E_e}$ and $c \leq \rho_{max}$ ensures that $(R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}R_{g_{\mathcal{G}}}(e)$ is positive definite for any $e \in \Omega_c$ and $(R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}\tilde{d} \neq 0$ for any $e \in \Omega_c$ and $e \notin E_e$.

- Distance-based approaches in 2D
 - Formation control considering inter-agent distance dynamics

Theorem

For *N*-agents, if (\mathcal{G}, p^*) is infinitesimally rigid in the plane, E_{p^*} is locally asymptotically stable under the proposed control law.

Proof.

Take $V(e) = (k_d/4) \sum_{(i,j) \in \mathcal{E}} (||e_{ij}||^2 - d_{ij}^*)^2$ as a Lyapunov function. The time derivative of V(e) is then arranged as

$$\dot{V}(e) = -k_d \tilde{d}^\mathsf{T} R_{g_\mathcal{G}}(e) ((R_{g_\mathcal{G}}(e))^\mathsf{T} R_{g_\mathcal{G}}(e))^{-1} (R_{g_\mathcal{G}}(e))^\mathsf{T} \tilde{d}.$$

From Lemma 14, there exists a level set Ω_c such that $(R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}R_{g_{\mathcal{G}}}(e)$ is positive definite for any $e \in \Omega_c$ and $(R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}\tilde{d} \neq 0$ for any $e \in \Omega_c$ and $e \notin E_e$. Since $\dot{V}(e)$ is negative definite in Ω_c , E_e is locally asymptotically stable, which in turn implies the local asymptotic stability of E_{p^*} .

- Distance-based approaches in 2D
 - —Formation control considering inter-agent distance dynamics

Theorem

Given an *N*-agent group, if (\mathcal{G}, p^*) is infinitesimally rigid, then the control law (5) achieves the asymptotic convergence of *p* to a point in *E*_{*p*}.

Proof.

From Lemma 14, there exists a level set Ω_c such that $(R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}R_{g_{\mathcal{G}}}(e)$ is positive definite for any $e \in \Omega_c$ and $(R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}\tilde{d} \neq 0$ for any $e \in \Omega_c$ and $e \notin E_e$. Since $((R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}R_{g_{\mathcal{G}}}(e))^{-1}$ is positive definite in Ω_c , there exists a constant M_R such that $\|((R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}R_{g_{\mathcal{G}}}(e))^{-1}\|_1 \leq M_R$, where $\|\cdot\|_1$ denotes the induced 1-norm of matrices. It can be followed by using the result from [Krick et al. -2009, IJC] that $u(t) = -(k_d/4k_g)((R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}R_{g_{\mathcal{G}}}(e))^{-1}u_g(t)$ also belongs to \mathcal{L}_1 space. Thus p asymptotically converges to a point in E_p .

- Distance-based approaches in 2D
 - —Formation control considering inter-agent distance dynamics

Theorem

Given an *N*-agent group, if (\mathcal{G}, p^*) is infinitesimally rigid, then the control law (5) achieves the asymptotic convergence of *p* to a point in *E*_{*p*}.

Proof.

From Lemma 14, there exists a level set Ω_c such that $(R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}R_{g_{\mathcal{G}}}(e)$ is positive definite for any $e \in \Omega_c$ and $(R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}\tilde{d} \neq 0$ for any $e \in \Omega_c$ and $e \notin E_e$. Since $((R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}R_{g_{\mathcal{G}}}(e))^{-1}$ is positive definite in Ω_c , there exists a constant M_R such that $\|((R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}R_{g_{\mathcal{G}}}(e))^{-1}\|_1 \leq M_R$, where $\|\cdot\|_1$ denotes the induced 1-norm of matrices. It can be followed by using the result from [Krick et al. -2009, IJC] that $u(t) = -(k_d/4k_g)((R_{g_{\mathcal{G}}}(e))^{\mathsf{T}}R_{g_{\mathcal{G}}}(e))^{-1}u_g(t)$ also belongs to \mathcal{L}_1 space. Thus p asymptotically converges to a point in E_p .

Table of contents

1 Background & problem statement

2 Distance-based approaches in 2D

- A review of gradient control laws
- Stability of formations under generalized gradient-based control laws
- Formation control considering inter-agent distance dynamics

3 Four-agent formations in 3-D

- Regular tetrahedron shape
- General tetrahedron shape

4 Open problems

- Gradient laws: Global convergence
- Global persistence

Table of contents

1 Background & problem statement

2 Distance-based approaches in 2D

- A review of gradient control laws
- Stability of formations under generalized gradient-based control laws
- Formation control considering inter-agent distance dynamics

3 Four-agent formations in 3-D

- Regular tetrahedron shape
- General tetrahedron shape

4 Open problems

- Gradient laws: Global convergence
- Global persistence

Notation

Relative displacements: $\mathbf{z}_1 = \mathbf{p}_2 - \mathbf{p}_1$,

$$z_2 = p_3 - p_1, z_3 = p_4 - p_1$$

- A square matrix: $Z = \begin{bmatrix} \mathbf{z}_1 & \mathbf{z}_2 & \mathbf{z}_3 \end{bmatrix}$.
- Remark that $\frac{1}{2} |\det Z|$ is the volume of the tetrahedron in the figure.
- Squared-distance error:

$$e_{ij}(t) = \|\mathbf{p}_i(t) - \mathbf{p}_j(t)\|^2 - d_{ij}^2, \quad \forall (i,j) \in \mathcal{E},$$

where
$$d_{ij} = \|\bar{\mathbf{p}}_i - \bar{\mathbf{p}}_j\|, \forall (i,j) \in \mathcal{E}$$
.
Define $\mathbf{e} = \begin{bmatrix} e_{12} & \dots & e_{34} \end{bmatrix}^{\mathsf{T}}$.

Assumption for simplification: $d_{ij} = d > 0$, $\forall (i,j) \in \mathcal{E}$ \Rightarrow a regular tetrahedron shape.

Gradient-descent law

- A potential function: $\phi(\mathbf{p}) = \frac{1}{4}\mathbf{e}^{\mathsf{T}}\mathbf{e} = \frac{1}{4}\sum_{(i,j)\in\mathcal{E}}e_{ij}^2$.
- Objective: $\lim_{t\to\infty} \phi(\mathbf{p}(t)) = 0$, $\lim_{t\to\infty} \mathbf{p}(t) = a$ finite point.

Gradient-descent law:

$$\mathbf{u} = -\nabla\phi = = -\left[\frac{\partial\phi}{\partial\mathbf{p}}\right]^{\mathsf{T}} = -R_{\mathcal{G}}^{\mathsf{T}}\mathbf{e}$$
(10)
$$= \begin{bmatrix} e_{12}\mathbf{z}_{1} + e_{13}\mathbf{z}_{2} + e_{14}\mathbf{z}_{3} \\ (-e_{12} - e_{23} - e_{24})\mathbf{z}_{1} + e_{23}\mathbf{z}_{2} + e_{24}\mathbf{z}_{3} \\ e_{23}\mathbf{z}_{1} + (-e_{13} - e_{23} - e_{34})\mathbf{z}_{2} + e_{34}\mathbf{z}_{3} \\ e_{24}\mathbf{z}_{1} + e_{34}\mathbf{z}_{2} + (-e_{14} - e_{24} - e_{34})\mathbf{z}_{3} \end{bmatrix},$$
(11)

 $\Leftrightarrow \forall i \in \mathcal{V}, \mathbf{u}_i = \sum_{j \in \mathcal{N}_i} (\|\mathbf{p}_j - \mathbf{p}_i\|^2 - d^2) (\mathbf{p}_j - \mathbf{p}_i)$, where \mathcal{N}_j is the set of neighbors of *i*.

Equilibrium states

$$\mathbf{u}_i = \sum_{j \in \mathcal{N}_i} (\|\mathbf{p}_j - \mathbf{p}_i\|^2 - d^2) (\mathbf{p}_j - \mathbf{p}_i) \triangleq \mathbf{u}_i^1 + \mathbf{u}_i^2 + \mathbf{u}_i^3.$$

- Desired equilibrium state: $\|\mathbf{p}_j \mathbf{p}_i\| = d, \forall (i,j) \in \mathcal{E}.$
- Undesired equilibrium state: $\exists (i,j) \in \mathcal{E}$, $\|\mathbf{p}_j \mathbf{p}_i\| \neq d$, $\forall k \in \mathcal{V}$, $\mathbf{u}_k = \mathbf{0}$.

Some sets

Equilibrium sets:

$$egin{aligned} \mathcal{Q} &= \left\{ \mathbf{p} \in \mathbb{R}^{3|\mathcal{V}|} \colon
abla \phi = \mathbf{0}
ight\}, \ \mathcal{D} &= \left\{ \mathbf{p} \in \mathbb{R}^{3|\mathcal{V}|} \colon \mathbf{e} = \mathbf{0}
ight\}, \ \mathcal{U} &= \mathcal{Q} \setminus \mathcal{D} = \left\{ \mathbf{p} \in \mathbb{R}^{3|\mathcal{V}|} \colon
abla \phi = \mathbf{0}, \, \mathbf{e}
eq \mathbf{0}
ight\}. \end{aligned}$$

A set by collinear agents:

$$\mathcal{C} = \left\{ \mathbf{p} \in \mathbb{R}^{3|\mathcal{V}|} : \det Z = 0 \right\}.$$

 \Rightarrow all agents exist on a plane.

• Analysis on ϕ :

$$\frac{\mathrm{d}\phi}{\mathrm{d}t} = \frac{\partial\phi}{\partial\mathbf{p}}\dot{\mathbf{p}} = -\|\nabla\phi\|^2 \le 0, \quad \because \dot{\mathbf{p}} = \mathbf{u} = -\nabla\phi.$$

 $\Rightarrow \lim_{t\to\infty} \nabla \phi = \mathbf{0} \Rightarrow \mathbf{p}(t) \text{ approaches } \mathcal{Q}(=\mathcal{D} \cup \mathcal{U}).$

Attractiveness of the equilibrium sets

Two cases:

$$\lim_{t \to \infty} \nabla \phi = \mathbf{0} \quad \text{and} \quad \begin{cases} \lim_{t \to \infty} \mathbf{e} = \mathbf{0} \quad \Rightarrow \quad \mathbf{p}(t) \text{ approaches } \mathcal{D}. \\ \text{or} \\ \lim_{t \to \infty} \mathbf{e} \neq \mathbf{0} \quad \Rightarrow \quad \mathbf{p}(t) \text{ approaches } \mathcal{U}. \end{cases}$$

Note that $\dot{\phi}$ is zero if and only if $\mathbf{u} = \mathbf{0}$.

Since z_1 , z_2 and z_3 exist in \mathbb{R}^3 , if they are linearly independent, then $\dot{p} = 0$ implies that e = 0 from (11).

Lemma

If $\mathbf{p} \in \mathcal{U}$, then \mathbf{z}_1 , \mathbf{z}_2 and \mathbf{z}_3 are linearly dependent.

Lemma 18 means that any formation, with $e \neq 0$, formed by $\forall p \in U$ should exist on a plane due to the linear dependence of z_1 , z_2 and z_3 , which means that det Z = 0. Hence, $U \subset C$.

Repulsiveness of the undesired equilibrium set

We have

$$\frac{\mathrm{d}}{\mathrm{d}t} \det Z = -2\sigma \det Z \quad \Rightarrow \quad \det Z = \exp\left[-2\int_0^t \sigma(\mathbf{p}(s)) \,\mathrm{d}s\right] \det Z_0,$$

where det Z_0 is det Z at t = 0, and $\sigma = \sum_{(i,j) \in \mathcal{E}} e_{ij}$.

If \mathcal{U} is attractive, then det Z converges to 0 because $\mathcal{U} \subseteq \mathcal{C}$.

$$\det Z = \underbrace{\exp\left[-2\int_0^t \sigma(\mathbf{p}(s))\,\mathrm{d}s\right]}_{>0} \det Z_0,$$

- It is true that det $Z \neq 0$ for all $t \geq 0$ if and only if det $Z_0 \neq 0$.
- There is a neighborhood of \mathcal{U} in which $\sigma < 0$ for all **p**.
- $exp[\cdot]$ does not converges to zero, which contradicts to the hypothesis.

Lemma

If $\mathbf{p}(0) \notin C$, then $\mathbf{p}(t)$ is bounded away from \mathcal{U} for all $t \geq 0$.

Main theorem

Theorem

For a given regular tetrahedral formation $(\mathcal{G}, \bar{\mathbf{p}})$ and the gradient-descent law, the realization $\mathbf{p}(t)$ converges to a finite point which is congruent to $\bar{\mathbf{p}}$ if and only if the initial condition $\mathbf{p}(0)$ satisfies $\mathbf{p}(0) \notin \mathcal{C}$.

Corollary

The realization $\mathbf{p}(t)$ approaches \mathcal{U} if $\mathbf{p}(0) \in \mathcal{C}$.

• Σ : a neighborhood of \mathcal{U} .

• $\partial \Sigma$: the boundary of Σ .

Table of contents

1 Background & problem statement

- 2 Distance-based approaches in 2D
 - A review of gradient control laws
 - Stability of formations under generalized gradient-based control laws
 - Formation control considering inter-agent distance dynamics

3 Four-agent formations in 3-D

- Regular tetrahedron shape
- General tetrahedron shape

4 Open problems

- Gradient laws: Global convergence
- Global persistence

- Four-agent formations in 3-D
 - —General tetrahedron shape

Assumptions

- Quadratic potential function: $V(p) = \frac{1}{4} \sum_{(i,j) \in \mathcal{E}} e_{ij}^2$
- Gradient-descent law:

$$\dot{p} = -\left[\frac{\partial V}{\partial p}\right]^T = -[R(p)]^T e(p) = -(E(p) \otimes I_3)p.$$
(12)

No mismatched desired distances.

$$R(p) \triangleq \frac{1}{2} \frac{\partial e}{\partial p} = \begin{bmatrix} p_1^T - p_2^T & p_2^T - p_1^T & 0 & 0\\ p_1^T - p_3^T & 0 & p_3^T - p_1^T & 0\\ p_1^T - p_4^T & 0 & 0 & p_4^T - p_1^T\\ 0 & p_2^T - p_3^T & p_3^T - p_2^T & 0\\ 0 & p_2^T - p_4^T & 0 & p_4^T - p_2^T\\ 0 & 0 & p_3^T - p_4^T & p_4^T - p_3^T \end{bmatrix}.$$
(13)

Further we assume that $R(\bar{p})$ has full row rank, which is equivalent that the framework (\mathcal{K}_4, \bar{p}) is rigid¹ (i.e., m = 3n-6).

¹Rigorously say, infinitesimally rigid

Existing Result

- p(t) approaches equilibrium set as $t \to \infty$.
- The origin of the error dynamics is (locally) exponentially stable.

$$\dot{V} = -eRR^T e \le -4 \left[\lambda_{\min}(RR^T)\right] V \le 0.$$
(14)

The matrix RR^T is positive definite near the desired formation shape from the assumption on \bar{p} . $\Rightarrow \lambda_{\min}(RR^T) > 0$.

- General tetrahedron shape

Analysis on Incorrect Equilibria

Consider incorrect equilibrium set given by

$$\mathcal{P}_{i} = \left\{ p \in \mathbb{R}^{3|\mathcal{V}|} : \dot{p} = -[R(p)]^{T} e(p) = -(E(p) \otimes I_{3})p = 0, \ e(p) \neq 0 \right\}.$$
(15)

Linearization:

$$\frac{\partial}{\partial p} \left[-\frac{\partial V}{\partial p} \right]^T = -H_V(p), \tag{16}$$

where H_V is the Hessian matrix of V by definition.

Investigate the existence of negative eigenvalue(s) of H_V .
- Four-agent formations in 3-D

- General tetrahedron shape

Analysis on Incorrect Equilibria

Let p* be an element in the incorrect equilibrium set. With an appropriate transformation, we have

$$\bar{H}_V(p^*) = \begin{bmatrix} \times & \times & 0 \\ \times & \times & 0 \\ 0 & 0 & E(p^*) \end{bmatrix}.$$
 (17)

- Show the existence of negative eigenvalu(s) of $E(p^*)$, which can be done by finding a vector x such that $x^T[E(p^*) \otimes I_3]x < 0$.
- Actually, we have

$$x^{T}[E(p^{*}) \otimes I_{3}]x = -\sum_{(i,j)\in\mathcal{E}} [e_{ij}(p^{*})]^{2} < 0,$$
 (18)

for $x = \overline{p}$.

Main Result I

Theorem

For almost every initial condition in $\mathbb{R}^{3|\mathcal{V}|}$, the trajectory p(t) converges to the desired equilibrium set \mathcal{P}_d , where $\mathcal{P}_d = \{p \in \mathbb{R}^{3|\mathcal{V}|} : e(p) = 0\}$.

Proof.

By taking the derivative of *V*, we have $\dot{V} = \frac{\partial V}{\partial p}\dot{p} = -\left\|\frac{\partial V}{\partial p}\right\|^2 \leq 0$, which results in that r_{ij} and e_{ij} are bounded for all $i, j \in \mathcal{V}$. From the boundedness of r_{ij} and e_{ij} , we can also show that \ddot{V} is bounded so $\dot{V}(p(t))$ is uniformly continuous in *t* on $[t_0, \infty)$ with an initial time t_0 . Since V(p(t)) is a non-increasing lower bounded function, the limit of V(p(t)) exists. Therefore, $\dot{V}(p(t))$ converges to 0 as $t \to \infty$ from Barbalat's lemma, which means that p(t) approaches either \mathcal{P}_d or \mathcal{P}_i . The instability of the incorrect equilibrium set \mathcal{P}_i has been previously shown. Therefore, for almost every initial condition in $\mathbb{R}^{3|\mathcal{V}|}$, p(t) approaches \mathcal{P}_d . - Four-agent formations in 3-D

Main Result II

- Consider $Z(p) = [r_{12} \ r_{13} \ r_{14}] \in \mathbb{R}^{3 \times 3}$, where $r_{ij} = p_i p_j$. Let $\Delta(p(t)) = \det Z(p(t))$
- $|\Delta|$ is proportional to the volume occupied by the tetrahedron in \mathbb{R}^3 .
- We can show that $\Delta(p^*) = 0$ for any p^* in the incorrect equilibrium set.
- Suppose that (\mathcal{K}_4, p^*) is a point formation or has a planner shape.
 - We can show that $\Delta(p(t))$ cannot converge to 0 if p(0) is not in $C = \{p \in \mathbb{R}^{3|\mathcal{V}|} : \Delta(p) = 0\}.$
- Suppose that (\mathcal{K}_4, p^*) is a line formation.
 - We can show that *p*(*t*) is able to converge to *p*^{*} only if (*K*₄, *p*) is a line formation.

Corollary

The region of attraction for the desired equilibrium set \mathcal{P}_d is $\mathbb{R}^{3|\mathcal{V}|} \setminus \mathcal{C}$.

Table of contents

1 Background & problem statement

2 Distance-based approaches in 2D

- A review of gradient control laws
- Stability of formations under generalized gradient-based control laws
- Formation control considering inter-agent distance dynamics

3 Four-agent formations in 3-D

- Regular tetrahedron shape
- General tetrahedron shape

4 Open problems

- Gradient laws: Global convergence
- Global persistence

— Open problems

Table of contents

1 Background & problem statement

- 2 Distance-based approaches in 2D
 - A review of gradient control laws
 - Stability of formations under generalized gradient-based control laws
 - Formation control considering inter-agent distance dynamics

3 Four-agent formations in 3-D

- Regular tetrahedron shape
- General tetrahedron shape

4 Open problems

- Gradient laws: Global convergence
- Global persistence

Open problems

Rigid graphs in 2-D

- We have solved K4 in 3-D; but can we extend the results in 3-D into 2-D?
- Minimally infinitesimal rigid graph with four agents into 2-D?
- General minimally rigid graph in 2-D?

— Open problems

- Gradient laws: Global convergence

Rigid graphs in 2-D

Solved

Not solved (partially)

Open problems

Table of contents

1 Background & problem statement

2 Distance-based approaches in 2D

- A review of gradient control laws
- Stability of formations under generalized gradient-based control laws
- Formation control considering inter-agent distance dynamics

3 Four-agent formations in 3-D

- Regular tetrahedron shape
- General tetrahedron shape

4 Open problems

- Gradient laws: Global convergence
- Global persistence

Open problems

- Global persistence

Persistence + global rigidity

— Open problems

- B. D. O. Anderson, C. Yu, B. Fidan, and J. M. Hendrickx. "Rigid graph control architectures for autonomous formations," IEEE Control Systems Magazine, 28 (6): 48-63, December 2008.
- Oh, K.-K., Park, M.-C., Ahn, H.-S., 2015. "A survey of multi-agent formation control," Automatica 53, 424-440

Thank You (hyosung@gist.ac.kr)