presented by Hyo－Sung Ahn in FNH2015
Fukuoka Workshop on Nonlinear Control Theory 2015

Technically supported by
IEEE CSS Technical Committee on Nonlinear Systems and Control

Stabilization of rigid formation and open problems

Hyo-Sung Ahn

Distributed Control \& Autonomous Systems Lab.
School of Mechatronics, Gwangju Institute of Science and Technology (GIST)
261 Cheomdan-gwagiro, Buk-gu, Gwangju, Republic of Korea

Dec. 2015

Table of contents

1 Background \& problem statement
2 Distance-based approaches in 2D

- A review of gradient control laws

■ Stability of formations under generalized gradient-based control laws

- Formation control considering inter-agent distance dynamics

3 Four-agent formations in 3-D
■ Regular tetrahedron shape

- General tetrahedron shape

4 Open problems
■ Gradient laws: Global convergence

- Global persistence

Multi-agent systems \& Distributed formation control

Agents and multi-agent systems:
■ An agent is understood as a dynamical system.
■ A multi-agent system is a collection, a group, or a team of dynamical systems.

Distributed formation control:

■ No centralized controller for a given multi-agent system.
■ Each agent has its own controller based on interaction with its neighboring agents.
■ Only the distances among agents are controlled by relative interactions; \rightarrow but a formation defined w.r.t a global coordinate frame is achieved.

Problem statement

■ Only local relative measurements
■ Each node controls its neighbor edges only
■ Control strategy for individual nodes?

- What are properties of graph for unique formation?

Problem statement

■ Not rigid (flex)
■ Distances are fixed; but configuration is changed with external forces

Problem statement

- Rigid

■ Configuration does not change provided that the distances are fixed even with external forces

Problem statement

■ Only distances are constrained

- Formation is fixed (rigid) or not-fixed (flex) ?

Problem statement

- Agent model:

$$
\dot{p}_{i}=u_{i}, i=1, \ldots, N,
$$

where $p_{i} \in \mathbb{R}^{n}$ and $u_{i} \in \mathbb{R}^{n}$.
■ Interaction graph: $\mathcal{G}=(\mathcal{V}, \mathcal{E})$.
■ Sensed variables:

$$
p_{j i}^{i}=p_{j}^{i}-p_{i}^{i}, j \in \mathcal{N}_{i}, i \in \mathcal{V},
$$

where the superscript i denotes that the variables are with respect to the local reference frames of agent i, and \mathcal{N}_{i} is the set of all neighbors of agent i.

■ Overall task: Given

$$
p^{*}=\left(p_{1}^{* T}, \ldots, p_{N}^{* T}\right)^{T},
$$

$$
\forall i, j \in \mathcal{V},\left\|p_{i}-p_{j}\right\| \rightarrow\left\|p_{i}^{*}-p_{j}^{*}\right\| .
$$

■ Local task for agent i :

$$
\forall j \in \mathcal{N}_{i},\left\|p_{i}-p_{j}\right\| \rightarrow\left\|p_{i}^{*}-p_{j}^{*}\right\| .
$$

■ Desired invariant set:

$$
E_{p^{*}} \triangleq\left\{p:\left\|p_{i}-p_{j}\right\|=\left\|p_{i}^{*}-p_{j}^{*}\right\|\right\} .
$$

- Also, ensure $\dot{p}_{i} \rightarrow 0$ or $\dot{p}_{i}<\infty$.

Graph rigidity

Given an undirected graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$, where $\mathcal{V}=\{1, \ldots, N\}$, let us assign $p_{i} \in \mathbb{R}^{n}$ to each vertex i for all $i \in \mathcal{V}$.

■ Realization: $p=\left(p_{1}^{T}, \ldots, p_{N}^{T}\right)^{T} \in \mathbb{R}^{n N}$, Framework: (\mathcal{G}, p)
■ Equivalence: Two frameworks (\mathcal{G}, p) and (\mathcal{G}, q) are equivalent if

$$
\forall(i, j) \in \mathcal{E},\left\|p_{i}-p_{j}\right\|=\left\|q_{i}-q_{j}\right\| .
$$

■ Congruence: Two frameworks (\mathcal{G}, p) and (\mathcal{G}, q) are congruent if

$$
\forall i, j \in \mathcal{V},\left\|p_{i}-p_{j}\right\|=\left\|q_{i}-q_{j}\right\| .
$$

Definition (Rigidity)

A framework (\mathcal{G}, p) is rigid if there exists a neighborhood U_{p} of p such that all frameworks equivalent to (\mathcal{G}, p) are congruent in U_{p}.

If (\mathcal{G}, p) is rigid, then the overall task and the local tasks are consistent.

Table of contents

1 Background \& problem statement
2 Distance-based approaches in 2D

- A review of gradient control laws
- Stability of formations under generalized gradient-based control laws

■ Formation control considering inter-agent distance dynamics
3 Four-agent formations in 3-D

- Regular tetrahedron shape

■ General tetrahedron shape
4 Open problems

- Gradient laws: Global convergence

■ Global persistence
$\left\llcorner_{\text {A review of gradient control laws }}\right.$

Table of contents

1 Background \& problem statement
2 Distance-based approaches in 2D

- A review of gradient control laws
- Stability of formations under generalized gradient-based control laws

■ Formation control considering inter-agent distance dynamics
3 Four-agent formations in 3-D

- Regular tetrahedron shape

■ General tetrahedron shape
4 Open problems

- Gradient laws: Global convergence

■ Global persistence

Preliminaries: incident matrices

Consider an undirected graph $\mathcal{G}=(\mathcal{V}, \mathcal{E})$.
■ Incidence matrix: $H=\left[h_{i j}\right] \in \mathbb{R}^{|\mathcal{E}| \times|\mathcal{V}|}$

$$
h_{i j} \triangleq\left\{\begin{array}{cl}
1, & \text { if vertex } j \text { is the sink vertex of edge } i \\
-1, & \text { if vertex } j \text { is the source vertex of edge } i \\
0, & \text { otherwise }
\end{array}\right.
$$

■ Edge partitioning: $\mathcal{E}=\mathcal{E}_{+} \cup \mathcal{E}_{-}$, where \mathcal{E}_{+}and \mathcal{E}_{-}are disjoint and $(i, j) \in \mathcal{E}_{+}$implies $(j, i) \in \mathcal{E}_{-}$.
■ Incidence matrix partitioning: $H=\left[H_{+}^{T},-H_{+}^{T}\right]^{T}$, where H_{+}is the incidence matrix corresponding to \mathcal{E}_{+}.
■ Link: the link $e=\left(e_{1}, \ldots, e_{M / 2}\right) \in \mathbb{R}^{n(M / 2)}, e_{i} \in \mathcal{E}_{+}$, of a framework (\mathcal{G}, p) is defined as $\left(e_{k}=p_{i}-p_{j} ; k=(i, j)\right)$:

$$
e \triangleq\left(H_{+}^{T} \otimes I_{n}\right) p
$$

Link space

$■$ Notations $\hat{H}_{+}=H_{+} \otimes I_{n}$. In undirected graph (under gradient control setups), we use $\hat{H}=\hat{H}_{+}=H_{+} \otimes I_{n}=\hat{H}_{-}=H_{-} \otimes I_{n}$, and $M / 2=m$ (i.e., cardinality of edges in undirected graph).

- Link space: The space $\operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right)$ is referred to as the link space associated with the framework (\mathcal{G}, p).
$■$ Edge function: We define a function $v_{\mathcal{G}}: \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right) \rightarrow \mathbb{R}^{M / 2}$ as

$$
v_{\mathcal{G}}(e) \triangleq\left(\left\|e_{1}\right\|^{2}, \ldots,\left\|e_{M / 2}\right\|^{2}\right)
$$

which corresponds to the edge function $g_{\mathcal{G}}$ parameterized in the link space. That is, $g_{\mathcal{G}}(p)=v_{\mathcal{G}}\left(\left(H_{+}^{T} \otimes I_{n}\right) p\right)$.
\square Defining D as $D(e) \triangleq \operatorname{diag}\left(e_{1}, \ldots, e_{M / 2}\right)$, we obtain

$$
\frac{\partial g_{\mathcal{G}}(p)}{\partial p}=\frac{\partial v_{\mathcal{G}}(e)}{\partial e} \frac{\partial e}{\partial p}=[D(e)]^{T}\left(H_{+}^{T} \otimes I_{n}\right)
$$

Gradient control laws - Krick, Broucke \& Francis, 2009

■ A potential function $\phi(p)$ as a function of $g_{\mathcal{G}}-d^{*}$

$$
\phi(p)=\frac{1}{2}\left\|g_{\mathcal{G}}-d^{*}\right\|
$$

■ With $u=-(\nabla \phi(p))^{T}$,

$$
\dot{p}=-H_{+}^{T} J_{v}^{T}\left(v_{\mathcal{G}}(e)-d^{*}\right)
$$

where $J_{v}=2 \operatorname{diag}\left\{e_{i}^{T}\right\}$.

- Control law for each agent is

$$
\dot{p}_{i}=u_{i}=-\sum_{j \in \text { edges leaving } i} \frac{1}{2}\left(\left\|e_{j}\right\|^{2}-d_{j}^{*}\right) e_{j}
$$

Gradient control laws - Krick, Broucke \& Francis, 2009

■ The centroid $p^{o}=\frac{1}{n} \sum_{i=1}^{n} p_{p}$ is stationary: i.e., $\dot{p}^{o}=0$.
■ Conduct coordinate transformation

$$
\tilde{p}=\left[\begin{array}{c}
p^{o} \tag{1}\\
\bar{p}
\end{array}\right]=\mathbf{P} p
$$

where \mathbf{P} is an orthonormal matrix whose first two rows are $\frac{1}{n} \mathbf{1}^{T} \otimes I_{2}$.
■ Equilibria

$$
\begin{aligned}
\mathcal{E}_{1} & :=\left\{p \mid g(p)-d^{*}=0\right\}=\{p \mid \phi(p)=0\} \\
\mathcal{E}_{2} & :=\left\{p \mid J_{v}^{T}\left(g(p)-d^{*}\right)=0\right\} \\
\mathcal{E} & :=\{p \mid \nabla \phi(p)=0\}
\end{aligned}
$$

It is noticeable that $\mathcal{E}_{1} \subset \mathcal{E}_{2} \subset \mathcal{E}$. The matrix H_{+}^{T} is $2 n \times 2 m$, so if $m>n$, the it has a nontrivial kernel.

Gradient control laws - Krick, Broucke \& Francis, 2009

- It is also possible to define equilibrium sets (target formations) for the reduced state \bar{p} such as

$$
\overline{\mathcal{E}}_{1}:=\left\{p \in \mathbb{R}^{2 N-2} \mid v(\bar{H} \bar{p})-d^{*}=0\right\}
$$

■ The advantage of using $\overline{\mathcal{E}}_{1}$ rather than \mathcal{E}_{1} in the ensuing stability analysis is that $\overline{\mathcal{E}}_{1}$ is compact, whereas \mathcal{E}_{1} is not.
■ Key idea: Via linearization \Longrightarrow Center manifold theory

-Stability of formations under generalized gradient-based control laws

Table of contents

1 Background \& problem statement
2 Distance-based approaches in 2D

- A review of gradient control laws

■ Stability of formations under generalized gradient-based control laws

- Formation control considering inter-agent distance dynamics

3 Four-agent formations in 3-D ■ Regular tetrahedron shape - General tetrahedron shape

4 Open problems
■ Gradient laws: Global convergence

- Global persistence

Motivation \& objective

Assumptions:

■ $\left(\mathcal{G}, p^{*}\right)$ is infinitesimally rigid.

- Realization dimension: general n-dimension.
\square Control law: generalized version of the gradient control law [Baillieul \& Suri, 2003].

Objectives:

■ Lyapunov stability analysis of rigid formations of single-integrators in n-dimensional space.
\square Extension of the result to double-integrator formations.

Generalized gradient control law

■ Global potential function ϕ :

$$
\phi(p) \triangleq \frac{k_{p}}{2} \sum_{(i, j) \in \mathcal{E}_{+}} \gamma\left(\left\|p_{j}-p_{i}\right\|^{2}-d_{j i}^{*}\right),
$$

where $\gamma: \mathbb{R} \rightarrow \mathbb{R}_{\geq 0}$ is positive definite and analytic in some neighborhood of 0 .

- Gradient control law:

$$
\begin{equation*}
\dot{p}=u=-\nabla \phi(p)=-k_{p}\left(H_{+} \otimes I_{n}\right) D(e) \Gamma(\tilde{d}), \tag{2}
\end{equation*}
$$

where $e \triangleq\left(H_{+}^{T} \otimes I_{n}\right) p, \tilde{d}=\left(\left\|e_{1}\right\|^{2}-\left\|e_{1}^{*}\right\|^{2}, \ldots,\left\|e_{M / 2}\right\|^{2}-\left\|e_{M / 2}^{*}\right\|^{2}\right)$ and
$\Gamma(\tilde{d}) \triangleq\left(\frac{\partial \gamma\left(\tilde{d}_{1}\right)}{\partial \dot{d}_{1}}, \ldots, \frac{\partial \gamma\left(\tilde{d}_{M / 2}\right)}{\partial \tilde{d}_{M / 2}}\right)$.

Generalized gradient control law

The gradient system is now described in the link space as follows:

$$
\begin{aligned}
\dot{e} & =\left(H_{+}^{T} \otimes I_{n}\right) \dot{p} \\
& =-k_{p}\left(H_{+}^{T} \otimes I_{n}\right)\left(H_{+} \otimes I_{n}\right) D(e) \Gamma(\tilde{d})
\end{aligned}
$$

■ For a given realization $p^{*}=\left[p_{1}^{* T} \cdots p_{N}^{* T}\right]^{T} \in \mathbb{R}^{n N}$, we define the desired formation $E_{p^{*}}$ of the agents as the set of formations that are congruent to p^{*} :

$$
\begin{equation*}
E_{p^{*}}:=\left\{p \in \mathbb{R}^{n N}:\left\|p_{j}-p_{i}\right\|=\left\|p_{j}^{*}-p_{i}^{*}\right\|, \forall i, j \in \mathcal{V}\right\} \tag{3}
\end{equation*}
$$

- Equilibrium set in position

$$
E_{p^{*}}^{\prime}=\left\{p \in \mathbb{R}^{n N}:\left\|p_{j}-p_{i}\right\|=\left\|p_{j}^{*}-p_{i}^{*}\right\|, \forall(i, j) \in \mathcal{E}_{+}\right\}
$$

■ Equilibrium set in the link space (compact)

$$
E_{e^{*}}^{\prime}=\left\{e \in \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right):\left\|e_{i}\right\|=\left\|e_{i}^{*}\right\|, \forall i=1, \ldots, m\right\}
$$

Generalized gradient control law

■ Main idea: $E_{e^{*}}^{\prime} \Rightarrow E_{p^{*}}^{\prime} \Rightarrow E_{p^{*}}$ or $E_{e^{*}}^{\prime} \Rightarrow E_{p^{*}}^{\prime} \Leftrightarrow E_{p^{*}}$ or $E_{e^{*}}^{\prime} \Leftrightarrow E_{p^{*}}^{\prime} \Leftrightarrow E_{p^{*}}$
■ To analyze the stability of $E_{e^{*}}^{\prime}$, we define $V: \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right) \rightarrow \overline{\mathbb{R}}_{+}$as

$$
V(e):=\sum_{i=1}^{M} \frac{1}{2} \gamma\left(\left\|e_{i}\right\|^{2}-\left\|e_{i}^{*}\right\|^{2}\right) .
$$

■ The time-derivative of V can be arranged as

$$
\begin{aligned}
\dot{V}(e) & =\frac{\partial V(e)}{\partial e} \dot{e}=-k_{p} \frac{\partial V(e)}{\partial e}\left(H_{+}^{T} \otimes I_{n}\right)\left(H_{+} \otimes I_{n}\right) D(e) \Gamma(\tilde{d}) \\
& =-k_{p} \underbrace{[D(e) \Gamma(\tilde{d})]^{T}\left(H_{+} \otimes I_{n}\right)^{T}}_{=-[\nabla \phi(p)]^{T}} \underbrace{\left(H_{+} \otimes I_{n}\right) D(e) \Gamma(\tilde{d})}_{=-\nabla \phi(p)} \\
& =-k_{p}\|\nabla \phi(p)\|^{2} \leq 0,
\end{aligned}
$$

which shows the local stability of $E_{e^{*}}^{\prime}$.

Generalized gradient control law

■ Then the local asymptotic stability of $E_{e^{*}}^{\prime}$ can be ensured by showing the existence of a neighborhood $U_{E_{e^{*}}^{\prime}}$ of $E_{e^{*}}^{\prime}$ such that, for any $e \in U_{E_{e^{*}}^{\prime}}$, if $e \notin E_{e^{*}}$ (or, $e \notin E_{e^{*}}^{\prime}$, then $\dot{V}(e)<0$.

Theorem

(Lojasiewicz's inequality) Suppose that $f: D \subseteq \mathbb{R}^{n_{f}} \rightarrow \mathbb{R}$ is a real analytic function in a neighborhood of $z \in D$. There exist constants $k_{f}>0$ and $\rho_{f} \in[0,1)$ such that

$$
\|\nabla f(x)\| \geq k_{f}\|f(x)-f(z)\|^{\rho_{f}}
$$

in some neighborhood of z.

Generalized gradient control law

Lemma

For any $\bar{p} \in E_{p^{*}}^{\prime}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that, for any $p \in U_{\bar{p}}$ and $p \notin E_{p^{*}}^{\prime},\|\nabla \phi(p)\|>0$.

Proof.

Since γ is analytic in some neighborhood of 0 , for any $\bar{p} \in E_{p^{*}}^{\prime}$, there exists a neighborhood of \bar{p} such that ϕ is analytic in the neighborhood. Thus it follows from Theorem 2 that there exist $k_{\phi}>0, \rho_{\phi} \in[0,1)$, and a neighborhood $U_{\bar{p}}$ of \bar{p} such that

$$
\|\nabla \phi(p)\| \geq k_{\phi}\|\phi(p)-\phi(\bar{p})\|^{\rho_{\phi}}=k_{\phi}\|\phi(p)\|^{\rho_{\phi}}
$$

for all $p \in U_{\bar{p}}$. Further, $\phi(p)=0$ if and only if $p \in E_{p^{*}}^{\prime}$ by the positive definiteness of γ. Thus, for any $p \in U_{\bar{p}}$ and $p \notin E_{p^{*}}^{\prime},\|\nabla \phi(p)\|>0$.

Generalized gradient control law

Lemma

For any $\bar{p} \in E_{p^{*}}^{\prime}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that, for any $p \in U_{\bar{p}}$ and $p \notin E_{p^{*}}^{\prime},\|\nabla \phi(p)\|>0$.

Proof.

Since γ is analytic in some neighborhood of 0 , for any $\bar{p} \in E_{p^{*}}^{\prime}$, there exists a neighborhood of \bar{p} such that ϕ is analytic in the neighborhood. Thus it follows from Theorem 2 that there exist $k_{\phi}>0, \rho_{\phi} \in[0,1)$, and a neighborhood $U_{\bar{p}}$ of \bar{p} such that

$$
\|\nabla \phi(p)\| \geq k_{\phi}\|\phi(p)-\phi(\bar{p})\|^{\rho_{\phi}}=k_{\phi}\|\phi(p)\|^{\rho_{\phi}}
$$

for all $p \in U_{\bar{p}}$. Further, $\phi(p)=0$ if and only if $p \in E_{p^{*}}^{\prime}$ by the positive definiteness of γ. Thus, for any $p \in U_{\bar{p}}$ and $p \notin E_{p^{*}}^{\prime},\|\nabla \phi(p)\|>0$.

Generalized gradient control law

Lemma

For any $\bar{p} \in E_{p^{*}}^{\prime}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that, for any $p \in U_{\bar{p}}$ and $p \notin E_{p^{*}}^{\prime},\|\nabla \phi(p)\|>0$.

Proof.

Since γ is analytic in some neighborhood of 0 , for any $\bar{p} \in E_{p^{*}}^{\prime}$, there exists a neighborhood of \bar{p} such that ϕ is analytic in the neighborhood. Thus it follows from Theorem 2 that there exist $k_{\phi}>0, \rho_{\phi} \in[0,1)$, and a neighborhood $U_{\bar{p}}$ of \bar{p} such that

$$
\|\nabla \phi(p)\| \geq k_{\phi}\|\phi(p)-\phi(\bar{p})\|^{\rho_{\phi}}=k_{\phi}\|\phi(p)\|^{\rho_{\phi}} .
$$

for all $p \in U_{\bar{p}}$. Further, $\phi(p)=0$ if and only if $p \in E_{p^{*}}^{\prime}$ by the positive definiteness of γ. Thus, for any $p \in U_{\bar{p}}$ and $p \notin E_{p^{*}}^{\prime},\|\nabla \phi(p)\|>0$.

Generalized gradient control law

Lemma

For any $\bar{p} \in E_{p^{*}}^{\prime}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that, for any $p \in U_{\bar{p}}$ and $p \notin E_{p^{*}}^{\prime},\|\nabla \phi(p)\|>0$.

Proof.

Since γ is analytic in some neighborhood of 0 , for any $\bar{p} \in E_{p^{*}}^{\prime}$, there exists a neighborhood of \bar{p} such that ϕ is analytic in the neighborhood. Thus it follows from Theorem 2 that there exist $k_{\phi}>0, \rho_{\phi} \in[0,1)$, and a neighborhood $U_{\bar{p}}$ of \bar{p} such that

$$
\|\nabla \phi(p)\| \geq k_{\phi}\|\phi(p)-\phi(\bar{p})\|^{\rho_{\phi}}=k_{\phi}\|\phi(p)\|^{\rho_{\phi}}
$$

for all $p \in U_{\bar{p}}$. Further, $\phi(p)=0$ if and only if $p \in E_{p^{*}}^{\prime}$ by the positive definiteness of γ. Thus, for any $p \in U_{\bar{p}}$ and $p \notin E_{p^{*}}^{\prime},\|\nabla \phi(p)\|>0$.

Generalized gradient control law

The local asymptotic stability of $E_{p^{*}}^{\prime}$ is then ensured based on Lemma 6 as follows:

Theorem
The set $E_{p^{*}}^{\prime}$ is locally asymptotically stable with respect to (2).

Proof.

We prove this theorem by showing that $E_{e^{*}}^{\prime}$ is locally asymptotically stable.
To show the local asymptotic stability of $E_{e^{*}}^{\prime}$, we construct a neighborhood of $E_{e^{*}}^{\prime}$ such that $\dot{V}(e) \geq 0$ for any e in the neighborhood and $\dot{V}(e)=0$ if and only if $e \in E_{e^{*}}^{\prime}$.
It follows from Lemma 6 that, for any $\bar{p} \in E_{p^{*}}^{\prime}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that $\|\nabla \phi(p)\|>0$ for all $p \in U_{\bar{p}}$ and $p \notin E_{p^{*}}^{\prime}$. We take $r_{p}^{*}>0$ such that

$$
D_{r_{p}^{*}}:=\left\{p \in \mathbb{R}^{n N}:\|p-\bar{p}\|<r_{p}^{*}\right\} \subseteq U_{\bar{p}}
$$

Define

$$
U_{E_{e^{*}}^{\prime *}}\left(r_{e}\right):=\left\{e \in \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right): \inf _{\eta \in E_{e^{*}}^{\prime}}\|e-\eta\|<r_{e}\right\} .
$$

Let $r_{e}^{*}=\sigma_{\min }\left(H_{+}^{T} \otimes I_{n}\right) r_{p}^{*}$, where $\sigma_{\text {min }}\left(H_{+}^{T} \otimes I_{n}\right)$ denotes the non-zero smallest singular value of $H_{+}^{T} \otimes I_{n}$.

Proof.

We prove this theorem by showing that $E_{e^{*}}^{\prime}$ is locally asymptotically stable.
To show the local asymptotic stability of $E_{e^{*}}^{\prime}$, we construct a neighborhood of $E_{e^{*}}^{\prime}$ such that $\dot{V}(e) \geq 0$ for any e in the neighborhood and $\dot{V}(e)=0$ if and only if $e \in E_{e^{*}}^{\prime}$.
It follows from Lemma 6 that, for any $\bar{p} \in E_{p^{*}}^{\prime}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that $\|\nabla \phi(p)\|>0$ for all $p \in U_{\bar{p}}$ and $p \notin E_{p^{*}}^{\prime}$. We take $r_{p}^{*}>0$ such that

$$
D_{r_{p}^{*}}:=\left\{p \in \mathbb{R}^{n N}:\|p-\bar{p}\|<r_{p}^{*}\right\} \subseteq U_{\bar{p}}
$$

Define

$$
U_{E_{e^{*}}^{\prime}}\left(r_{e}\right):=\left\{e \in \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right): \inf _{\eta \in E_{e^{*}}^{\prime}}\|e-\eta\|<r_{e}\right\} .
$$

Let $r_{e}^{*}=\sigma_{\min }\left(H_{+}^{T} \otimes I_{n}\right) r_{p}^{*}$, where $\sigma_{\text {min }}\left(H_{+}^{T} \otimes I_{n}\right)$ denotes the non-zero smallest singular value of $H_{+}^{T} \otimes I_{n}$.

Proof.

We prove this theorem by showing that $E_{e^{*}}^{\prime}$ is locally asymptotically stable.
To show the local asymptotic stability of $E_{e^{*}}^{\prime}$, we construct a neighborhood of $E_{e^{*}}^{\prime}$ such that $\dot{V}(e) \geq 0$ for any e in the neighborhood and $\dot{V}(e)=0$ if and only if $e \in E_{e^{*}}^{\prime}$.
It follows from Lemma 6 that, for any $\bar{p} \in E_{p^{*}}^{\prime}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that $\|\nabla \phi(p)\|>0$ for all $p \in U_{\bar{p}}$ and $p \notin E_{p^{*}}^{\prime}$. We take $r_{p}^{*}>0$ such that

$$
D_{r_{p}^{*}}:=\left\{p \in \mathbb{R}^{n N}:\|p-\bar{p}\|<r_{p}^{*}\right\} \subseteq U_{\bar{p}} .
$$

Define

$$
U_{E_{e^{*}}^{\prime}}\left(r_{e}\right):=\left\{e \in \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right): \inf _{\eta \in E_{e^{*}}^{\prime}}\|e-\eta\|<r_{e}\right\} .
$$

Let $r_{e}^{*}=\sigma_{\min }\left(H_{+}^{T} \otimes I_{n}\right) r_{p}^{*}$, where $\sigma_{\text {min }}\left(H_{+}^{T} \otimes I_{n}\right)$ denotes the non-zero smallest singular value of $H_{+}^{T} \otimes I_{n}$.

Proof.

We prove this theorem by showing that $E_{e^{*}}^{\prime}$ is locally asymptotically stable.
To show the local asymptotic stability of $E_{e^{*}}^{\prime}$, we construct a neighborhood of $E_{e^{*}}^{\prime}$ such that $\dot{V}(e) \geq 0$ for any e in the neighborhood and $\dot{V}(e)=0$ if and only if $e \in E_{e^{*}}^{\prime}$.
It follows from Lemma 6 that, for any $\bar{p} \in E_{p^{*}}^{\prime}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that $\|\nabla \phi(p)\|>0$ for all $p \in U_{\bar{p}}$ and $p \notin E_{p^{*}}^{\prime}$. We take $r_{p}^{*}>0$ such that

$$
\begin{equation*}
D_{r_{p}^{*}}:=\left\{p \in \mathbb{R}^{n N}:\|p-\bar{p}\|<r_{p}^{*}\right\} \subseteq U_{\bar{p}} \tag{4}
\end{equation*}
$$

Define

$$
U_{E_{e^{*}}^{\prime}}\left(r_{e}\right):=\left\{e \in \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right): \inf _{\eta \in E_{e^{*}}^{\prime}}\|e-\eta\|<r_{e}\right\} .
$$

Let $r_{e}^{*}=\sigma_{\min }\left(H_{+}^{T} \otimes I_{n}\right) r_{p}^{*}$, where $\sigma_{\min }\left(H_{+}^{T} \otimes I_{n}\right)$ denotes the non-zero smallest singular value of $H_{+}^{T} \otimes I_{n}$.

Proof.

(Cont.) Then, for any $e \in U_{E_{e_{*}^{*}}^{\prime}}\left(r_{e}^{*}\right)$, there exists $\bar{e} \in E_{e^{*}}^{\prime}$ such that

$$
\inf _{\eta \in E_{e^{*}}^{\prime}}\|e-\eta\|=\|e-\bar{e}\|<r_{e}^{*}
$$

because $E_{e^{*}}^{\prime}$ is compact and $\|e-\eta\|$ is a continuous function of η. From the fact that $(e-\bar{e}) \in \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right)$, there always exist $p \in \mathbb{R}^{n N}$ and $\bar{p} \in E_{p^{*}}^{\prime}$ such that $\left(H_{+}^{T} \otimes I_{n}\right)(p-\bar{p})=e-\bar{e}$ and $(p-\bar{p}) \in \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right)$. Since $p-\bar{p}$ belongs to the row space of $H_{+}^{T} \otimes I_{n}$, we obtain

$$
\sigma_{\min }\left(H_{+}^{T} \otimes I_{n}\right)\|p-\bar{p}\| \leq\|e-\bar{e}\|
$$

Thus we have $\|p-\bar{p}\| \leq \frac{\|e-\bar{e}\|}{\sigma_{\min }\left(H_{+}^{T} \otimes I_{n}\right)}<r_{p}^{*}$, which implies that $p \in U_{\bar{p}}$ from (4). It follows from Lemma 6 that if $e \notin E_{e^{*}}^{\prime}, \dot{V}(e)=-k_{p}\|\nabla \phi(p)\|^{2}<0$, which implies that $E_{e^{*}}^{\prime}$ is locally asymptotically stable. Thus $E_{p^{*}}^{\prime}$ is locally asymptotically stable with respect to (2).

Proof.

(Cont.) Then, for any $e \in U_{E_{e^{*}}^{\prime}}\left(r_{e}^{*}\right)$, there exists $\bar{e} \in E_{e^{*}}^{\prime}$ such that

$$
\inf _{\eta \in E_{e^{*}}^{\prime}}\|e-\eta\|=\|e-\bar{e}\|<r_{e}^{*}
$$

because $E_{e^{*}}^{\prime}$ is compact and $\|e-\eta\|$ is a continuous function of η. From the fact that $(e-\bar{e}) \in \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right)$, there always exist $p \in \mathbb{R}^{n N}$ and $\bar{p} \in E_{p^{*}}^{\prime}$ such that $\left(H_{+}^{T} \otimes I_{n}\right)(p-\bar{p})=e-\bar{e}$ and $(p-\bar{p}) \in \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right)$. Since $p-\bar{p}$ belongs to the row space of $H_{+}^{T} \otimes I_{n}$, we obtain

$$
\sigma_{\min }\left(H_{+}^{T} \otimes I_{n}\right)\|p-\bar{p}\| \leq\|e-\bar{e}\|
$$

Thus we have $\|p-\bar{p}\| \leq \frac{\|e-\bar{e}\|}{\sigma_{\text {min }}\left(H_{+}^{T} \otimes I_{n}\right)}<r_{p}^{*}$, which implies that $p \in U_{\bar{p}}$ from (4).
It follows from Lemma 6 that if $e \notin E_{e^{*}}^{\prime}, \dot{V}(e)=-k_{p}\|\nabla \phi(p)\|^{2}<0$, which implies that $E_{e^{*}}^{\prime}$ is locally asymptotically stable. Thus $E_{p^{*}}^{\prime}$ is locally asymptotically stable with respect to (2).

Proof.

(Cont.) Then, for any $e \in U_{E_{e^{*}}^{\prime}}\left(r_{e}^{*}\right)$, there exists $\bar{e} \in E_{e^{*}}^{\prime}$ such that

$$
\inf _{\eta \in E_{e^{*}}^{\prime}}\|e-\eta\|=\|e-\bar{e}\|<r_{e}^{*}
$$

because $E_{e^{*}}^{\prime}$ is compact and $\|e-\eta\|$ is a continuous function of η. From the fact that $(e-\bar{e}) \in \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right)$, there always exist $p \in \mathbb{R}^{n N}$ and $\bar{p} \in E_{p^{*}}^{\prime}$ such that $\left(H_{+}^{T} \otimes I_{n}\right)(p-\bar{p})=e-\bar{e}$ and $(p-\bar{p}) \in \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right)$. Since $p-\bar{p}$ belongs to the row space of $H_{+}^{T} \otimes I_{n}$, we obtain

$$
\sigma_{\min }\left(H_{+}^{T} \otimes I_{n}\right)\|p-\bar{p}\| \leq\|e-\bar{e}\|
$$

Thus we have $\|p-\bar{p}\| \leq \frac{\|e-\bar{e}\|}{\sigma_{\min }\left(H_{+}^{T} \otimes I_{n}\right)}<r_{p}^{*}$, which implies that $p \in U_{\bar{p}}$ from (4). It follows from Lemma 6 that if $e \notin E_{e^{*}}^{\prime}, \dot{V}(e)=-k_{p}\|\nabla \phi(p)\|^{2}<0$, which implies that $E_{e^{*}}^{\prime}$ is locally asymptotically stable. Thus $E_{p^{*}}^{\prime}$ is locally asymptotically stable with respect to (2).

Proof.

(Cont.) Then, for any $e \in U_{E_{e^{*}}^{\prime}}\left(r_{e}^{*}\right)$, there exists $\bar{e} \in E_{e^{*}}^{\prime}$ such that

$$
\inf _{\eta \in E_{e^{*}}^{\prime}}\|e-\eta\|=\|e-\bar{e}\|<r_{e}^{*}
$$

because $E_{e^{*}}^{\prime}$ is compact and $\|e-\eta\|$ is a continuous function of η. From the fact that $(e-\bar{e}) \in \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right)$, there always exist $p \in \mathbb{R}^{n N}$ and $\bar{p} \in E_{p^{*}}^{\prime}$ such that $\left(H_{+}^{T} \otimes I_{n}\right)(p-\bar{p})=e-\bar{e}$ and $(p-\bar{p}) \in \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right)$. Since $p-\bar{p}$ belongs to the row space of $H_{+}^{T} \otimes I_{n}$, we obtain

$$
\sigma_{\min }\left(H_{+}^{T} \otimes I_{n}\right)\|p-\bar{p}\| \leq\|e-\bar{e}\|
$$

Thus we have $\|p-\bar{p}\| \leq \frac{\|e-\bar{e}\|}{\sigma_{\text {min }}\left(H_{+}^{T} \otimes I_{n}\right)}<r_{p}^{*}$, which implies that $p \in U_{\bar{p}}$ from (4).
It follows from Lemma 6 that if $e \notin E_{e^{*}}^{\prime}, \dot{V}(e)=-k_{p}\|\nabla \phi(p)\|^{2}<0$, which implies that $E_{e^{*}}^{\prime}$ is locally asymptotically stable. Thus $E_{p^{*}}^{\prime}$ is locally asymptotically stable with respect to (2).

Proof.

(Cont.) Then, for any $e \in U_{E_{e^{*}}^{\prime}}\left(r_{e}^{*}\right)$, there exists $\bar{e} \in E_{e^{*}}^{\prime}$ such that

$$
\inf _{\eta \in E_{e^{*}}^{\prime}}\|e-\eta\|=\|e-\bar{e}\|<r_{e}^{*}
$$

because $E_{e^{*}}^{\prime}$ is compact and $\|e-\eta\|$ is a continuous function of η. From the fact that $(e-\bar{e}) \in \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right)$, there always exist $p \in \mathbb{R}^{n N}$ and $\bar{p} \in E_{p^{*}}^{\prime}$ such that $\left(H_{+}^{T} \otimes I_{n}\right)(p-\bar{p})=e-\bar{e}$ and $(p-\bar{p}) \in \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right)$. Since $p-\bar{p}$ belongs to the row space of $H_{+}^{T} \otimes I_{n}$, we obtain

$$
\sigma_{\min }\left(H_{+}^{T} \otimes I_{n}\right)\|p-\bar{p}\| \leq\|e-\bar{e}\|
$$

Thus we have $\|p-\bar{p}\| \leq \frac{\|e-\bar{e}\|}{\sigma_{\min }\left(H_{+}^{1} \otimes \otimes I_{n}\right)}<r_{p}^{*}$, which implies that $p \in U_{\bar{p}}$ from (4).
It follows from Lemma 6 that if $e \notin E_{e^{*}}^{\prime}, \dot{V}(e)=-k_{p}\|\nabla \phi(p)\|^{2}<0$, which implies that $E_{e^{*}}^{\prime}$ is locally asymptotically stable. Thus $E_{p^{*}}^{\prime}$ is locally asymptotically stable with respect to (2).

Proof.

(Cont.) Then, for any $e \in U_{E_{e^{*}}^{\prime}}\left(r_{e}^{*}\right)$, there exists $\bar{e} \in E_{e^{*}}^{\prime}$ such that

$$
\inf _{\eta \in E_{e^{*}}^{\prime}}\|e-\eta\|=\|e-\bar{e}\|<r_{e}^{*}
$$

because $E_{e^{*}}^{\prime}$ is compact and $\|e-\eta\|$ is a continuous function of η. From the fact that $(e-\bar{e}) \in \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right)$, there always exist $p \in \mathbb{R}^{n N}$ and $\bar{p} \in E_{p^{*}}^{\prime}$ such that $\left(H_{+}^{T} \otimes I_{n}\right)(p-\bar{p})=e-\bar{e}$ and $(p-\bar{p}) \in \operatorname{Im}\left(H_{+}^{T} \otimes I_{n}\right)$. Since $p-\bar{p}$ belongs to the row space of $H_{+}^{T} \otimes I_{n}$, we obtain

$$
\sigma_{\min }\left(H_{+}^{T} \otimes I_{n}\right)\|p-\bar{p}\| \leq\|e-\bar{e}\|
$$

Thus we have $\|p-\bar{p}\| \leq \frac{\|e-\bar{e}\|}{\sigma_{\text {min }}\left(H_{+}^{+} \otimes I_{n}\right)}<r_{p}^{*}$, which implies that $p \in U_{\bar{p}}$ from (4).
It follows from Lemma 6 that if $e \notin E_{e^{*}}^{\prime}, \dot{V}(e)=-k_{p}\|\nabla \phi(p)\|^{2}<0$, which implies that $E_{e^{*}}^{\prime}$ is locally asymptotically stable. Thus $E_{p^{*}}^{\prime}$ is locally asymptotically stable with respect to (2).

Stability analysis

Theorem

If $\left(\mathcal{G}, p^{*}\right)$ is rigid, the set $E_{p^{*}}$ is locally asymptotically stable with respect to (2).

Proof.

From Theorem $7, E_{p^{*}}^{\prime}$ is locally asymptotically stable. Since $\left(\mathcal{G}, p^{*}\right)$ is rigid, it follows from the definition of the graph rigidity that, for any $\bar{p} \in E_{p^{*}}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that $E_{p^{*}} \cap U_{\bar{p}}=E_{p^{*}}^{\prime} \cap U_{\bar{p}}$. This implies that $E_{p^{*}}$ is locally asymptotically stable with respect to (2).

Stability analysis

Theorem

If $\left(\mathcal{G}, p^{*}\right)$ is rigid, the set $E_{p^{*}}$ is locally asymptotically stable with respect to (2).

Proof.

From Theorem $7, E_{p^{*}}^{\prime}$ is locally asymptotically stable. Since $\left(\mathcal{G}, p^{*}\right)$ is rigid, it follows from the definition of the graph rigidity that, for any $\bar{p} \in E_{p^{*}}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that $E_{p^{*}} \cap U_{\bar{p}}=E_{p^{*}}^{\prime} \cap U_{\bar{p}}$. This implies that $E_{p^{*}}$ is locally asymptotically stable with respect to (2).

Stability analysis

Theorem

If $\left(\mathcal{G}, p^{*}\right)$ is rigid, the set $E_{p^{*}}$ is locally asymptotically stable with respect to (2).

Proof.

From Theorem $7, E_{p^{*}}^{\prime}$ is locally asymptotically stable. Since $\left(\mathcal{G}, p^{*}\right)$ is rigid, it follows from the definition of the graph rigidity that, for any $\bar{p} \in E_{p^{*}}$, there exists a neighborhood $U_{\bar{p}}$ of \bar{p} such that $E_{p^{*}} \cap U_{\bar{p}}=E_{p^{*}}^{\prime} \cap U_{\bar{p}}$. This implies that $E_{p^{*}}$ is locally asymptotically stable with respect to (2).

ᄂ Formation control considering inter-agent distance dynamics

Table of contents

1 Background \& problem statement
2 Distance-based approaches in 2D

- A review of gradient control laws
- Stability of formations under generalized gradient-based control laws

■ Formation control considering inter-agent distance dynamics
3 Four-agent formations in 3-D
■ Regular tetrahedron shape
■ General tetrahedron shape
4 Open problems
■ Gradient laws: Global convergence

- Global persistence

Main idea

■ Edges (inter-agent distances) are analyzed as control inputs
■ Then, the control inputs for edges are separated into neighbor agents

Inter-agent distance dynamics

The time-derivative of $d_{i j}\left(\triangleq\left\|p_{i}-p_{j}\right\|^{2}\right)$ for any $(i, j) \in \mathcal{E}$:

$$
\dot{d}_{i j}=\frac{d}{d t}\left(\left\|p_{i}-p_{j}\right\|^{2}\right)=\underbrace{2\left(p_{i}-p_{j}\right)^{T}\left(u_{i}-u_{j}\right)}_{\text {Virtual control law } u_{i j} \triangleq} .
$$

Design procedure

(1) Design $u_{i j}$ to stabilize $d_{i j}$ such that $d_{i j} \rightarrow d_{i j}^{*}$; (2) Then design u_{i} and u_{j} to implement $u_{i j}$.

- Virtual control input design:

$$
u_{i j}=-k_{d}\left(d_{i j}-d_{i j}^{*}\right) \Rightarrow d_{i j}(t)=e^{-k_{d} t} d_{i j}^{0}+\left(1-e^{-k_{d} t}\right) d_{i j}^{*}
$$

- Virtual control law vs. control law for the agents,

$$
u_{i j}=\underbrace{2\left(p_{i}-p_{j}\right)^{T}\left(u_{i}-u_{j}\right)}_{\text {By definition }}=\underbrace{-k_{d} \tilde{d}_{i j}}_{\text {By design }}, \tilde{d}_{i j}=d_{i j}-d_{i j}^{*} .
$$

Three-agent case

Proposed control law for three-agent case:

$$
\begin{array}{r}
4\left(p_{j}-p_{i}\right)^{T} u_{i}=k_{d} \tilde{d}_{i j}, \\
4\left(p_{i}-p_{j}\right)^{T} u_{j}=k_{d} d_{i j}
\end{array} \Rightarrow \underbrace{\binom{\left(p_{j}-p_{i}\right)^{T}}{\left(p_{k}-p_{i}\right)^{T}}}_{A_{i} \triangleq} u_{i}=\frac{k_{d}}{4} \underbrace{\binom{\tilde{d}_{i j}}{\tilde{d}_{i k}}}_{b_{i} \triangleq} \Rightarrow u_{i}=\frac{k_{d}}{4} A_{i}^{-1} b_{i} .
$$

Theorem

For three-agents in the plane, if p^{0} and p^{*} are not collinear, then

- the proposed control law is nonsingular;
- the invariant set E_{p}^{*} is globally asymptotically stable;
- $\tilde{d}_{i j}$ for all $(i, j) \in \mathcal{E}$ exponentially and monotonically converge to zero.

General case

Given $d=\left(\ldots, d_{i j}, \ldots\right)$ for all $(i, j) \in \mathcal{E},(\mathcal{G}, d)$ is realizable if there exists a realization $\left(p_{1}^{T}, \ldots, p_{N}^{T}\right)^{T} \in \mathbb{R}^{n N}$ such that $\forall i, j \in \mathcal{V},\left\|p_{i}-p_{j}\right\|^{2}=d_{i j}$.

Realizability problem

$\left(\mathcal{G}, d^{0}\right)$ and $\left(\mathcal{G}, d^{*}\right)$ is realizable in two-dimension $\Rightarrow\left(\mathcal{G}, \alpha d^{0}+(1-\alpha) d^{*}\right)$, where $0 \leq \alpha \leq 1$, is realizable in at most four-dimension [Havel et al., 1983].
No control law such that $u_{i j}=-k_{d}\left(d_{i j}-d_{i j}^{*}\right)$.

The virtual control law $u_{i j}=-k_{d}\left(d_{i j}-d_{i j}^{*}\right)$ gives rise to a possibly over-determined system of linear equations

$$
\underbrace{\left(\begin{array}{c}
\vdots \\
\left(p_{j}-p_{i}\right)^{T} \\
\vdots
\end{array}\right)}_{A_{i} \triangleq} u_{i}=\frac{k_{d}}{4}\left(\begin{array}{c}
\vdots \\
\tilde{d}_{i j} \\
\vdots
\end{array}\right), j \in \mathcal{N}_{i}
$$

Projection of $\frac{k_{d}}{4} b_{i}$ to the column space of A_{i}
\Leftrightarrow Projection of the realization of $\left(\mathcal{G}, \alpha d^{0}+(1-\alpha) d^{*}\right)$ to the plane

General case

Proposed control law:

$$
\begin{aligned}
& A_{i} u_{i}=\frac{k_{d}}{4} b_{i} \\
& \Rightarrow u_{i}=\underset{u_{i} \in \mathbb{R}^{2}}{\operatorname{argmin}}\left\|A_{i} u_{i}-\frac{k_{d}}{4} b_{i}\right\|^{2} \\
& \Rightarrow u_{i}=\frac{k_{d}}{4}\left(A_{i}^{T} A_{i}\right)^{-1} A_{i}^{T} b_{i}
\end{aligned}
$$

Lemma

(Used for ensuring existence of control input) For N-agents, if (\mathcal{G}, p) is infinitesimally rigid in the plane, then the proposed control law is nonsingular.

Proof.

Due to the infinitesimal rigidity of (\mathcal{G}, p), the first leading principal minor of $A_{i}^{\top} A_{i}$ is positive: $\sum_{j \in \mathcal{N}_{i}}\left(x_{j}-x_{i}\right)^{2}>0$ for all $i \in \mathcal{V}$. Since $N \geq 3$ and agent i has at least two neighboring agents due to the rigidity of (\mathcal{G}, p), the second leading principal minor of $A_{i}^{\top} A_{i}$ is also positive by the Cauchy-Schwarz inequality:

$$
\sum_{j \in \mathcal{N}_{i}}\left(x_{j}-x_{i}\right)^{2} \sum_{j \in \mathcal{N}_{i}}\left(y_{j}-y_{i}\right)^{2}-\left(\sum_{j \in \mathcal{N}_{i}}\left(x_{j}-x_{i}\right)\left(y_{j}-y_{i}\right)\right)^{2}>0
$$

The second leading principal minor of $A_{i}^{\top} A_{i}$ is zero if and only if $\left(\ldots, x_{j}-x_{i}, \ldots\right)$ and $\left(\ldots, y_{j}-y_{i}, \ldots\right), j \in \mathcal{N}_{i}$, are linearly dependent, which implies that p_{i} and $p_{j}, j \in \mathcal{N}_{i}$, are collinear. It then follows from Sylvester's criterion that $A_{i}^{\top} A_{i}$ is positive definite. Thus $\left(A_{i}^{\top} A_{i}\right)^{-1}$ is positive definite by the positive definiteness of $A_{i}^{\top} A_{i}$.

General case

Lemma

(Used for proving negative definiteness of the derivative of Lyapunov function) Given an N-agent group, if (\mathcal{G}, p^{*}) is infinitesimally rigid, then there exists a level set $\Omega_{c}=\{e: V(e) \leq c\}$ such that $\left(R_{g G}(e)\right)^{\top} R_{g g}(e)$ is positive definite for any $e \in \Omega_{c}$ and $\left(R_{g g}(e)\right)^{\top} \tilde{d} \neq 0$ for any $e \in \Omega_{c}$ and $e \notin E_{e}$.

Proof.

First, due to the infinitesimal rigidity of $\left(\mathcal{G}, p^{*}\right)$, if a point p is sufficiently close to E_{p}, then (\mathcal{G}, p) is infinitesimally rigid, which, together with Lemma 12, implies that $\left(R_{g G}(p)\right)^{\top} R_{g G}(p)$ is positive definite. Thus there exists a positive constant $\rho_{\max }$ such that if $\rho_{\max } \geq \rho>0$, then $\left(R_{g g}(e)\right)^{\top} R_{g g}(e)$ is positive definite for any $e \in \Omega_{\rho}=\{e: V(e) \leq \rho\}$.

General case

Lemma

(Used for proving negative definiteness of the derivative of Lyapunov function) Given an N-agent group, if $\left(\mathcal{G}, p^{*}\right)$ is infinitesimally rigid, then there exists a level set $\Omega_{c}=\{e: V(e) \leq c\}$ such that $\left(R_{g_{\mathcal{G}}}(e)\right)^{\top} R_{g_{\mathcal{G}}}(e)$ is positive definite for any $e \in \Omega_{c}$ and $\left(R_{g_{\mathcal{G}}}(e)\right)^{\top} \tilde{d} \neq 0$ for any $e \in \Omega_{c}$ and $e \notin E_{e}$.

Proof.

First, due to the infinitesimal rigidity of $\left(\mathcal{G}, p^{*}\right)$, if a point p is sufficiently close to E_{p}, then (\mathcal{G}, p) is infinitesimally rigid, which, together with Lemma 12, implies that $\left(R_{g_{\mathcal{G}}}(p)\right)^{\top} R_{g_{\mathcal{G}}}(p)$ is positive definite. Thus there exists a positive constant $\rho_{\max }$ such that if $\rho_{\max } \geq \rho>0$, then $\left(R_{g_{\mathcal{G}}}(e)\right)^{\top} R_{g_{\mathcal{G}}}(e)$ is positive definite for any $e \in \Omega_{\rho}=\{e: V(e) \leq \rho\}$.

Proof.

(Cont.) Second, since $\phi(p)$, which is the potential function, is a real analytic function in some neighborhood of any $\bar{p} \in E_{p}$, it follows from Theorem 2 that there exist a neighborhood $\mathcal{U}_{\bar{p}}$ of \bar{p} and constants $k_{\bar{p}}>0$ and $\rho_{\bar{p}} \in[0,1)$ such that

$$
\|\nabla \phi(p)\|=\left\|-k_{g}\left(R_{g G}(p)\right)^{\top} \tilde{d}\right\| \geq k_{\bar{p}}\|\phi(p)-\phi(\bar{p})\|^{\rho_{\bar{p}}}
$$

for all $p \in \mathcal{U}_{\bar{p}}$. Since $\phi(p)=0$ only if $p \in E_{p}$,

$$
\begin{equation*}
\left\|k_{g}\left(R_{g G}(p)\right)^{\top} \tilde{d}\right\| \geq k_{\bar{p}}\|\phi(p)\|^{\rho_{\bar{p}}}>0 \tag{6}
\end{equation*}
$$

for all $p \in \mathcal{U}_{\bar{p}}$ and $p \notin E_{p}$. Then, for any $\bar{e} \in E_{e}$, we can take a neighborhood $\mathcal{U}_{\bar{e}}$ of \bar{e} such that

$$
\left\|\left(R_{g \varrho}(e)\right)^{\top} \tilde{d}\right\|>0
$$

for all $e \in \mathcal{U}_{\bar{e}}$ and $e \notin E_{e}$.

Proof.

(Cont.) Second, since $\phi(p)$, which is the potential function, is a real analytic function in some neighborhood of any $\bar{p} \in E_{p}$, it follows from Theorem 2 that there exist a neighborhood $\mathcal{U}_{\bar{p}}$ of \bar{p} and constants $k_{\bar{p}}>0$ and $\rho_{\bar{p}} \in[0,1)$ such that

$$
\|\nabla \phi(p)\|=\left\|-k_{g}\left(R_{g G}(p)\right)^{\top} \tilde{d}\right\| \geq k_{\bar{p}}\|\phi(p)-\phi(\bar{p})\|^{\rho_{\bar{p}}}
$$

for all $p \in \mathcal{U}_{\bar{p}}$. Since $\phi(p)=0$ only if $p \in E_{p}$,

$$
\begin{equation*}
\left\|k_{g}\left(R_{g G}(p)\right)^{\top} \tilde{d}\right\| \geq k_{\bar{p}}\|\phi(p)\|^{\rho_{\bar{p}}}>0 \tag{7}
\end{equation*}
$$

for all $p \in \mathcal{U}_{\bar{p}}$ and $p \notin E_{p}$. Then, for any $\bar{e} \in E_{e}$, we can take a neighborhood $\mathcal{U}_{\bar{e}}$ of \bar{e} such that

$$
\left\|\left(R_{g G}(e)\right)^{\top} \tilde{d}\right\|>0
$$

for all $e \in \mathcal{U}_{\bar{e}}$ and $e \notin E_{e}$.

Proof.

(Cont.) Second, since $\phi(p)$, which is the potential function, is a real analytic function in some neighborhood of any $\bar{p} \in E_{p}$, it follows from Theorem 2 that there exist a neighborhood $\mathcal{U}_{\bar{p}}$ of \bar{p} and constants $k_{\bar{p}}>0$ and $\rho_{\bar{p}} \in[0,1)$ such that

$$
\|\nabla \phi(p)\|=\left\|-k_{g}\left(R_{g G}(p)\right)^{\top} \tilde{d}\right\| \geq k_{\bar{p}}\|\phi(p)-\phi(\bar{p})\|^{\rho_{\bar{p}}}
$$

for all $p \in \mathcal{U}_{\bar{p}}$. Since $\phi(p)=0$ only if $p \in E_{p}$,

$$
\begin{equation*}
\left\|k_{g}\left(R_{g G}(p)\right)^{\top} \tilde{d}\right\| \geq k_{\bar{p}}\|\phi(p)\|^{\rho_{\bar{p}}}>0 \tag{8}
\end{equation*}
$$

for all $p \in \mathcal{U}_{\bar{p}}$ and $p \notin E_{p}$. Then, for any $\bar{e} \in E_{e}$, we can take a neighborhood $\mathcal{U}_{\bar{e}}$ of \bar{e} such that

$$
\begin{equation*}
\left\|\left(R_{g \mathcal{G}}(e)\right)^{\top} \tilde{d}\right\|>0 \tag{9}
\end{equation*}
$$

for all $e \in \mathcal{U}_{\bar{e}}$ and $e \notin E_{e}$.

Proof.

(Cont.) Third, due to the compactness of E_{e}, there exists a finite open cover $\mathcal{U}_{E_{e}}=\bigcup_{k=1}^{n_{e}} \mathcal{U}_{\bar{e}_{k}}$ such that (9) holds for all $e \in \mathcal{U}_{E_{e}}$ and $e \notin E_{e}$. That is, for any $k \in\left\{1, \ldots, n_{e}\right\}$, if $e \in \mathcal{U}_{\bar{e}_{k}}$ and $e \notin E_{e}$, then (9) holds. Taking $\mathcal{U}_{E_{e}}$ and c such that $\Omega_{c} \subseteq \mathcal{U}_{E_{e}}$ and $c \leq \rho_{\max }$ ensures that $\left(R_{g \mathcal{G}}(e)\right)^{\top} R_{g \mathcal{G}}(e)$ is positive definite for any $e \in \Omega_{c}$ and $\left(R_{g \mathcal{G}}(e)\right)^{\top} \tilde{d} \neq 0$ for any $e \in \Omega_{c}$ and $e \notin E_{e}$.

Proof.

(Cont.) Third, due to the compactness of E_{e}, there exists a finite open cover $\mathcal{U}_{E_{e}}=\bigcup_{k=1}^{n_{e}} \mathcal{U}_{\bar{e}_{k}}$ such that (9) holds for all $e \in \mathcal{U}_{E_{e}}$ and $e \notin E_{e}$. That is, for any $k \in\left\{1, \ldots, n_{e}\right\}$, if $e \in \mathcal{U}_{\bar{e}_{k}}$ and $e \notin E_{e}$, then (9) holds. Taking $\mathcal{U}_{E_{e}}$ and c such that $\Omega_{c} \subseteq \mathcal{U}_{E_{e}}$ and $c \leq \rho_{\max }$ ensures that $\left(R_{g \mathcal{G}}(e)\right)^{\top} R_{g \mathcal{G}}(e)$ is positive definite for any $e \in \Omega_{c}$ and $\left(R_{g \mathcal{G}}(e)\right)^{\top} \tilde{d} \neq 0$ for any $e \in \Omega_{c}$ and $e \notin E_{e}$.

Proof.

(Cont.) Third, due to the compactness of E_{e}, there exists a finite open cover $\mathcal{U}_{E_{e}}=\bigcup_{k=1}^{n_{e}} \mathcal{U}_{\bar{e}_{k}}$ such that (9) holds for all $e \in \mathcal{U}_{E_{e}}$ and $e \notin E_{e}$. That is, for any $k \in\left\{1, \ldots, n_{e}\right\}$, if $e \in \mathcal{U}_{\bar{e}_{k}}$ and $e \notin E_{e}$, then (9) holds. Taking $\mathcal{U}_{E_{e}}$ and c such that $\Omega_{c} \subseteq \mathcal{U}_{E_{e}}$ and $c \leq \rho_{\max }$ ensures that $\left(R_{g \varrho}(e)\right)^{\top} R_{g G}(e)$ is positive definite for any $e \in \Omega_{c}$ and $\left(R_{g \varrho}(e)\right)^{\top} \tilde{d} \neq 0$ for any $e \in \Omega_{c}$ and $e \notin E_{e}$.

General case

Theorem

For N-agents, if $\left(\mathcal{G}, p^{*}\right)$ is infinitesimally rigid in the plane, $E_{p^{*}}$ is locally asymptotically stable under the proposed control law.

Proof.

Take $V(e)=\left(k_{d} / 4\right) \sum_{(i, j) \in \mathcal{E}}\left(\left\|e_{i j}\right\|^{2}-d_{i j}^{*}\right)^{2}$ as a Lyapunov function. The time derivative of $V(e)$ is then arranged as

$$
\dot{V}(e)=-k_{d} \tilde{d}^{\top} R_{g_{\mathcal{G}}}(e)\left(\left(R_{g_{\mathcal{G}}}(e)\right)^{\top} R_{g_{\mathcal{G}}}(e)\right)^{-1}\left(R_{g_{\mathcal{G}}}(e)\right)^{\top} \tilde{d}
$$

From Lemma 14, there exists a level set Ω_{c} such that $\left(R_{g \mathcal{G}}(e)\right)^{\top} R_{g \varrho}(e)$ is positive definite for any $e \in \Omega_{c}$ and $\left(R_{g G}(e)\right)^{\top} \tilde{d} \neq 0$ for any $e \in \Omega_{c}$ and $e \notin E_{e}$. Since $\dot{V}(e)$ is negative definite in Ω_{c}, E_{e} is locally asymptotically stable, which in turn implies the local asymptotic stability of $E_{p^{*}}$.

General case

Theorem

Given an N-agent group, if $\left(\mathcal{G}, p^{*}\right)$ is infinitesimally rigid, then the control law (5) achieves the asymptotic convergence of p to a point in E_{p}.

Proof.

From Lemma 14, there exists a level set Ω_{c} such that $\left(R_{g \mathcal{G}}(e)\right)^{\top} R_{g G}(e)$ is positive definite for any $e \in \Omega_{c}$ and $\left(R_{g G}(e)\right)^{\top} \tilde{d} \neq 0$ for any $e \in \Omega_{c}$ and $e \notin E_{e}$. Since $\left(\left(R_{g G}(e)\right)^{\top} R_{g G}(e)\right)^{-1}$ is positive definite in Ω_{c}, there exists a constant M_{R} such that $\left\|\left(\left(R_{g G}(e)\right)^{\top} R_{g G}(e)\right)^{-1}\right\|_{1} \leq M_{R}$, where $\|\cdot\|_{1}$ denotes the induced 1 -norm of matrices. It can be followed by using the result from [Krick et al. -2009, IJC] that $u(t)=-\left(k_{d} / 4 k_{g}\right)\left(\left(R_{g \mathcal{G}}(e)\right)^{\top} R_{g_{\mathcal{G}}}(e)\right)^{-1} u_{g}(t)$ also belongs to \mathcal{L}_{1} space. Thus p asymptotically converges to a point in E_{p}.

General case

Theorem

Given an N-agent group, if $\left(\mathcal{G}, p^{*}\right)$ is infinitesimally rigid, then the control law (5) achieves the asymptotic convergence of p to a point in E_{p}.

Proof.

From Lemma 14, there exists a level set Ω_{c} such that $\left(R_{g \mathcal{G}}(e)\right)^{\top} R_{g \mathcal{G}}(e)$ is positive definite for any $e \in \Omega_{c}$ and $\left(R_{g g}(e)\right)^{\top} \tilde{d} \neq 0$ for any $e \in \Omega_{c}$ and $e \notin E_{e}$. Since $\left(\left(R_{g G}(e)\right)^{\top} R_{g G}(e)\right)^{-1}$ is positive definite in Ω_{c}, there exists a constant M_{R} such that $\left\|\left(\left(R_{g G}(e)\right)^{\top} R_{g G}(e)\right)^{-1}\right\|_{1} \leq M_{R}$, where $\|\cdot\|_{1}$ denotes the induced 1 -norm of matrices. It can be followed by using the result from [Krick et al. -2009, IJC] that $u(t)=-\left(k_{d} / 4 k_{g}\right)\left(\left(R_{g \varrho}(e)\right)^{\top} R_{g_{\mathcal{G}}}(e)\right)^{-1} u_{g}(t)$ also belongs to \mathcal{L}_{1} space. Thus p asymptotically converges to a point in E_{p}.

Table of contents

1 Background \& problem statement
2 Distance-based approaches in 2D

- A review of gradient control laws

■ Stability of formations under generalized gradient-based control laws
■ Formation control considering inter-agent distance dynamics
3 Four-agent formations in 3-D

- Regular tetrahedron shape
- General tetrahedron shape

4 Open problems
■ Gradient laws: Global convergence

- Global persistence

Rigid formation
L Four-agent formations in 3-D
L Regular tetrahedron shape

Table of contents

1 Background \& problem statement
2 Distance-based approaches in 2D

- A review of gradient control laws

■ Stability of formations under generalized gradient-based control laws
■ Formation control considering inter-agent distance dynamics
3 Four-agent formations in 3-D
■ Regular tetrahedron shape

- General tetrahedron shape

4 Open problems
■ Gradient laws: Global convergence

- Global persistence

Notation

■ Relative displacements: $\mathbf{z}_{1}=\mathbf{p}_{2}-\mathbf{p}_{1}$,
$\mathbf{z}_{2}=\mathbf{p}_{3}-\mathbf{p}_{1}, \mathbf{z}_{3}=\mathbf{p}_{4}-\mathbf{p}_{1}$

- A square matrix: $Z=\left[\begin{array}{lll}\mathbf{z}_{1} & \mathbf{z}_{2} & \mathbf{z}_{3}\end{array}\right]$.
- Remark that $\frac{1}{2}|\operatorname{det} Z|$ is the volume of the tetrahedron in the figure.
■ Squared-distance error:

$$
e_{i j}(t)=\left\|\mathbf{p}_{i}(t)-\mathbf{p}_{j}(t)\right\|^{2}-d_{i j}^{2}, \quad \forall(i, j) \in \mathcal{E}
$$

where $d_{i j}=\left\|\overline{\mathbf{p}}_{i}-\overline{\mathbf{p}}_{j}\right\|, \forall(i, j) \in \mathcal{E}$.
Define $\mathbf{e}=\left[\begin{array}{lll}e_{12} & \ldots & e_{34}\end{array}\right]^{\top}$.
■ Assumption for simplification: $d_{i j}=d>0$,

$\forall(i, j) \in \mathcal{E}$
\Rightarrow a regular tetrahedron shape.

Gradient-descent law

■ A potential function: $\phi(\mathbf{p})=\frac{1}{4} \mathbf{e}^{\top} \mathbf{e}=\frac{1}{4} \sum_{(i, j) \in \mathcal{E}} e_{i j}^{2}$.
■ Objective: $\lim _{t \rightarrow \infty} \phi(\mathbf{p}(t))=0$, $\lim _{t \rightarrow \infty} \mathbf{p}(t)=$ a finite point.
■ Gradient-descent law:

$$
\begin{align*}
\mathbf{u}=-\nabla \phi= & =-\left[\frac{\partial \phi}{\partial \mathbf{p}}\right]^{\top}=-R_{\mathcal{G}}^{\top} \mathbf{e} \tag{10}\\
& =\left[\begin{array}{c}
e_{12} \mathbf{z}_{1}+e_{13} \mathbf{z}_{2}+e_{14} \mathbf{z}_{3} \\
\left(-e_{12}-e_{23}-e_{24}\right) \mathbf{z}_{1}+e_{23} \mathbf{z}_{2}+e_{24} \mathbf{z}_{3} \\
e_{23} \mathbf{z}_{1}+\left(-e_{13}-e_{23}-e_{34}\right) \mathbf{z}_{2}+e_{34} \mathbf{z}_{3} \\
e_{24} \mathbf{z}_{1}+e_{34} \mathbf{z}_{2}+\left(-e_{14}-e_{24}-e_{34}\right) \mathbf{z}_{3}
\end{array}\right], \tag{11}
\end{align*}
$$

$\Leftrightarrow \forall i \in \mathcal{V}, \mathbf{u}_{i}=\sum_{j \in \mathcal{N}_{i}}\left(\left\|\mathbf{p}_{j}-\mathbf{p}_{i}\right\|^{2}-d^{2}\right)\left(\mathbf{p}_{j}-\mathbf{p}_{i}\right)$, where \mathcal{N}_{j} is the set of neighbors of i.

Equilibrium states

$$
\mathbf{u}_{i}=\sum_{j \in \mathcal{N}_{i}}\left(\left\|\mathbf{p}_{j}-\mathbf{p}_{i}\right\|^{2}-d^{2}\right)\left(\mathbf{p}_{j}-\mathbf{p}_{i}\right) \triangleq \mathbf{u}_{i}^{1}+\mathbf{u}_{i}^{2}+\mathbf{u}_{i}^{3}
$$

Desired equilibrium state: $\left\|\mathbf{p}_{j}-\mathbf{p}_{i}\right\|=d, \forall(i, j) \in \mathcal{E}$.
■ Undesired equilibrium state: $\exists(i, j) \in \mathcal{E},\left\|\mathbf{p}_{j}-\mathbf{p}_{i}\right\| \neq d, \forall k \in \mathcal{V}, \mathbf{u}_{k}=\mathbf{0}$.

Some sets

■ Equilibrium sets:

$$
\begin{aligned}
& \mathcal{Q}=\left\{\mathbf{p} \in \mathbb{R}^{3|\mathcal{V}|}: \nabla \phi=\mathbf{0}\right\}, \\
& \mathcal{D}=\left\{\mathbf{p} \in \mathbb{R}^{3 \mid \mathcal{V |}}: \mathbf{e}=\mathbf{0}\right\}, \\
& \mathcal{U}=\mathcal{Q} \backslash \mathcal{D}=\left\{\mathbf{p} \in \mathbb{R}^{3|\mathcal{V}|}: \nabla \phi=\mathbf{0}, \mathbf{e} \neq \mathbf{0}\right\} .
\end{aligned}
$$

■ A set by collinear agents:

$$
\mathcal{C}=\left\{\mathbf{p} \in \mathbb{R}^{3|\mathcal{V}|}: \operatorname{det} Z=0\right\} .
$$

\Rightarrow all agents exist on a plane.
■ Analysis on ϕ :

$$
\frac{\mathrm{d} \phi}{\mathrm{~d} t}=\frac{\partial \phi}{\partial \mathbf{p}} \dot{\mathbf{p}}=-\|\nabla \phi\|^{2} \leq 0, \quad \because \dot{\mathbf{p}}=\mathbf{u}=-\nabla \phi .
$$

$\Rightarrow \lim _{t \rightarrow \infty} \nabla \phi=\mathbf{0} \Rightarrow \mathbf{p}(t)$ approaches $\mathcal{Q}(=\mathcal{D} \cup \mathcal{U})$.

Attractiveness of the equilibrium sets

■ Two cases:

$$
\lim _{t \rightarrow \infty} \nabla \phi=\mathbf{0} \quad \text { and } \quad\left\{\begin{array}{c}
\lim _{t \rightarrow \infty} \mathbf{e}=\mathbf{0} \Rightarrow \mathbf{p}(t) \text { approaches } \mathcal{D} . \\
\text { or } \\
\lim _{t \rightarrow \infty} \mathbf{e} \neq \mathbf{0} \Rightarrow \mathbf{p}(t) \text { approaches } \mathcal{U} .
\end{array}\right.
$$

■ Note that $\dot{\phi}$ is zero if and only if $\mathbf{u}=\mathbf{0}$.
$■$ Since $\mathbf{z}_{1}, \mathbf{z}_{2}$ and \mathbf{z}_{3} exist in \mathbb{R}^{3}, if they are linearly independent, then $\dot{\mathbf{p}}=\mathbf{0}$ implies that $\mathbf{e}=\mathbf{0}$ from (11).

Lemma

If $\mathbf{p} \in \mathcal{U}$, then $\mathbf{z}_{1}, \mathbf{z}_{2}$ and \mathbf{z}_{3} are linearly dependent.
■ Lemma 18 means that any formation, with $\mathbf{e} \neq \mathbf{0}$, formed by $\forall \mathbf{p} \in \mathcal{U}$ should exist on a plane due to the linear dependence of $\mathbf{z}_{1}, \mathbf{z}_{2}$ and \mathbf{z}_{3}, which means that $\operatorname{det} Z=0$. Hence, $\mathcal{U} \subset \mathcal{C}$.

Repulsiveness of the undesired equilibrium set

- We have

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \operatorname{det} Z=-2 \sigma \operatorname{det} Z \quad \Rightarrow \quad \operatorname{det} Z=\exp \left[-2 \int_{0}^{t} \sigma(\mathbf{p}(s)) \mathrm{d} s\right] \operatorname{det} Z_{0},
$$

where $\operatorname{det} Z_{0}$ is $\operatorname{det} Z$ at $t=0$, and $\sigma=\sum_{(i, j) \in \mathcal{E}} e_{i j}$.
■ If \mathcal{U} is attractive, then $\operatorname{det} Z$ converges to 0 because $\mathcal{U} \subseteq \mathcal{C}$.

$$
\operatorname{det} Z=\underbrace{\exp \left[-2 \int_{0}^{t} \sigma(\mathbf{p}(s)) \mathrm{d} s\right]}_{>0} \operatorname{det} Z_{0}
$$

■ It is true that $\operatorname{det} Z \neq 0$ for all $t \geq 0$ if and only if $\operatorname{det} Z_{0} \neq 0$.

- There is a neighborhood of \mathcal{U} in which $\sigma<0$ for all \mathbf{p}.

■ $\exp [\cdot]$ does not converges to zero, which contradicts to the hypothesis.

Lemma

If $\mathbf{p}(0) \notin \mathcal{C}$, then $\mathbf{p}(t)$ is bounded away from \mathcal{U} for all $t \geq 0$.

Main theorem

Theorem

For a given regular tetrahedral formation ($\mathcal{G}, \overline{\mathbf{p}})$ and the gradient-descent law, the realization $\mathbf{p}(t)$ converges to a finite point which is congruent to $\overline{\mathbf{p}}$ if and only if the initial condition $\mathbf{p}(0)$ satisfies $\mathbf{p}(0) \notin \mathcal{C}$.

Corollary

The realization $\mathbf{p}(t)$ approaches \mathcal{U} if $\mathbf{p}(0) \in \mathcal{C}$.
$\square \Sigma$: a neighborhood of \mathcal{U}.
■ $\partial \Sigma$: the boundary of Σ.

Rigid formation
L Four-agent formations in 3-D
General tetrahedron shape

Table of contents

1 Background \& problem statement
2 Distance-based approaches in 2D

- A review of gradient control laws
- Stability of formations under generalized gradient-based control laws

■ Formation control considering inter-agent distance dynamics
3 Four-agent formations in 3-D

- Regular tetrahedron shape

■ General tetrahedron shape
4 Open problems
■ Gradient laws: Global convergence

- Global persistence

Assumptions

\square Quadratic potential function: $V(p)=\frac{1}{4} \sum_{(i, j) \in \mathcal{E}} e_{i j}^{2}$
■ Gradient-descent law:

$$
\begin{equation*}
\dot{p}=-\left[\frac{\partial V}{\partial p}\right]^{T}=-[R(p)]^{T} e(p)=-\left(E(p) \otimes I_{3}\right) p \tag{12}
\end{equation*}
$$

■ No mismatched desired distances.

$$
R(p) \triangleq \frac{1}{2} \frac{\partial e}{\partial p}=\left[\begin{array}{cccc}
p_{1}^{T}-p_{2}^{T} & p_{2}^{T}-p_{1}^{T} & 0 & 0 \tag{13}\\
p_{1}^{T}-p_{3}^{T} & 0 & p_{3}^{T}-p_{1}^{T} & 0 \\
p_{1}^{T}-p_{4}^{T} & 0 & 0 & p_{4}^{T}-p_{1}^{T} \\
0 & p_{2}^{T}-p_{3}^{T} & p_{3}^{T}-p_{2}^{T} & 0 \\
0 & p_{2}^{T}-p_{4}^{T} & 0 & p_{4}^{T}-p_{2}^{T} \\
0 & 0 & p_{3}^{T}-p_{4}^{T} & p_{4}^{T}-p_{3}^{T}
\end{array}\right]
$$

■ Further we assume that $R(\bar{p})$ has full row rank, which is equivalent that the framework $\left(\mathcal{K}_{4}, \bar{p}\right)$ is rigid ${ }^{1}$ (i.e., $\mathrm{m}=3 \mathrm{n}-6$).

[^0]
Existing Result

■ $p(t)$ approaches equilibrium set as $t \rightarrow \infty$.
■ The origin of the error dynamics is (locally) exponentially stable.

$$
\begin{equation*}
\dot{V}=-e R R^{T} e \leq-4\left[\lambda_{\min }\left(R R^{T}\right)\right] V \leq 0 . \tag{14}
\end{equation*}
$$

- The matrix $R R^{T}$ is positive definite near the desired formation shape from the assumption on $\bar{p} . \Rightarrow \lambda_{\min }\left(R R^{T}\right)>0$.

Analysis on Incorrect Equilibria

■ Consider incorrect equilibrium set given by

$$
\begin{equation*}
\mathcal{P}_{i}=\left\{p \in \mathbb{R}^{3|\mathcal{V}|}: \dot{p}=-[R(p)]^{T} e(p)=-\left(E(p) \otimes I_{3}\right) p=0, e(p) \neq 0\right\} . \tag{15}
\end{equation*}
$$

■ Linearization:

$$
\begin{equation*}
\frac{\partial}{\partial p}\left[-\frac{\partial V}{\partial p}\right]^{T}=-H_{V}(p) \tag{16}
\end{equation*}
$$

where H_{V} is the Hessian matrix of V by definition.
■ Investigate the existence of negative eigenvalue(s) of H_{V}.

Analysis on Incorrect Equilibria

■ Let p^{*} be an element in the incorrect equilibrium set. With an appropriate transformation, we have

$$
\bar{H}_{V}\left(p^{*}\right)=\left[\begin{array}{ccc}
\times & \times & 0 \tag{17}\\
\times & \times & 0 \\
0 & 0 & E\left(p^{*}\right)
\end{array}\right] .
$$

■ Show the existence of negative eigenvalu(s) of $E\left(p^{*}\right)$, which can be done by finding a vector x such that $x^{T}\left[E\left(p^{*}\right) \otimes I_{3}\right] x<0$.
■ Actually, we have

$$
\begin{equation*}
x^{T}\left[E\left(p^{*}\right) \otimes I_{3}\right] x=-\sum_{(i, j) \in \mathcal{E}}\left[e_{i j}\left(p^{*}\right)\right]^{2}<0, \tag{18}
\end{equation*}
$$

for $x=\bar{p}$.

Main Result I

Theorem

For almost every initial condition in $\mathbb{R}^{3|\mathcal{V}|}$, the trajectory $p(t)$ converges to the desired equilibrium set \mathcal{P}_{d}, where $\mathcal{P}_{d}=\left\{p \in \mathbb{R}^{3|\mathcal{V}|}: e(p)=0\right\}$.

Proof.

By taking the derivative of V, we have $\dot{V}=\frac{\partial V}{\partial p} \dot{p}=-\left\|\frac{\partial V}{\partial p}\right\|^{2} \leq 0$, which results in that $r_{i j}$ and $e_{i j}$ are bounded for all $i, j \in \mathcal{V}$. From the boundedness of $r_{i j}$ and $e_{i j}$, we can also show that \ddot{V} is bounded so $\dot{V}(p(t))$ is uniformly continuous in t on $\left[t_{0}, \infty\right)$ with an initial time t_{0}. Since $V(p(t))$ is a non-increasing lower bounded function, the limit of $V(p(t))$ exists. Therefore, $\dot{V}(p(t))$ converges to 0 as $t \rightarrow \infty$ from Barbalat's lemma, which means that $p(t)$ approaches either \mathcal{P}_{d} or \mathcal{P}_{i}. The instability of the incorrect equilibrium set \mathcal{P}_{i} has been previously shown. Therefore, for almost every initial condition in $\mathbb{R}^{3|\mathcal{V}|}, p(t)$ approaches \mathcal{P}_{d}.

Main Result II

$■$ Consider $Z(p)=\left[\begin{array}{lll}r_{12} & r_{13} & r_{14}\end{array}\right] \in \mathbb{R}^{3 \times 3}$, where $r_{i j}=p_{i}-p_{j}$. Let $\Delta(p(t))=\operatorname{det} Z(p(t))$
$\square|\Delta|$ is proportional to the volume occupied by the tetrahedron in \mathbb{R}^{3}.
\square We can show that $\Delta\left(p^{*}\right)=0$ for any p^{*} in the incorrect equilibrium set.
■ Suppose that $\left(\mathcal{K}_{4}, p^{*}\right)$ is a point formation or has a planner shape.
■ We can show that $\Delta(p(t))$ cannot converge to 0 if $p(0)$ is not in $\mathcal{C}=\left\{p \in \mathbb{R}^{3|\mathcal{V}|}: \Delta(p)=0\right\}$.
■ Suppose that $\left(\mathcal{K}_{4}, p^{*}\right)$ is a line formation.

- We can show that $p(t)$ is able to converge to p^{*} only if $\left(\mathcal{K}_{4}, p\right)$ is a line formation.

Corollary

The region of attraction for the desired equilibrium set \mathcal{P}_{d} is $\mathbb{R}^{3|\mathcal{V}|} \backslash \mathcal{C}$.

Table of contents

1 Background \& problem statement
2 Distance-based approaches in 2D

- A review of gradient control laws
- Stability of formations under generalized gradient-based control laws

■ Formation control considering inter-agent distance dynamics
3 Four-agent formations in 3-D
■ Regular tetrahedron shape
■ General tetrahedron shape
4 Open problems

- Gradient laws: Global convergence

■ Global persistence

Table of contents

1 Background \& problem statement
2 Distance-based approaches in 2D

- A review of gradient control laws

■ Stability of formations under generalized gradient-based control laws
■ Formation control considering inter-agent distance dynamics
3 Four-agent formations in 3-D
■ Regular tetrahedron shape
■ General tetrahedron shape
4 Open problems
■ Gradient laws: Global convergence

- Global persistence

Rigid graphs in 2-D

■ We have solved $K 4$ in 3-D; but can we extend the results in 3-D into 2-D?
■ Minimally infinitesimal rigid graph with four agents into 2-D?
■ General minimally rigid graph in 2-D?

Rigid formation
L Open problems
L Gradient laws: Global convergence
Rigid graphs in 2-D

Solved

Not solved (partially)

K4: Not solved

Table of contents

1 Background \& problem statement
2 Distance-based approaches in 2D

- A review of gradient control laws
- Stability of formations under generalized gradient-based control laws

■ Formation control considering inter-agent distance dynamics
3 Four-agent formations in 3-D
■ Regular tetrahedron shape
■ General tetrahedron shape
4 Open problems

- Gradient laws: Global convergence

■ Global persistence

Rigid formation
L Open problems
L Global persistence

Persistence + global rigidity

References

■ B. D. O. Anderson, C. Yu, B. Fidan, and J. M. Hendrickx. "Rigid graph control architectures for autonomous formations," IEEE Control Systems Magazine, 28 (6): 48-63, December 2008.
■ Oh, K.-K., Park, M.-C., Ahn, H.-S., 2015. "A survey of multi-agent formation control," Automatica 53, 424-440

Thank You (hyosung@gist.ac.kr)

[^0]: ${ }^{1}$ Rigorously say, infinitesimally rigid

