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Rigid formation
L Background & problem statement

Multi-agent systems & Distributed formation control

Agents and multi-agent systems:

m An agent is understood as a dynamical system.

m A multi-agent system is a collection, a group, or a team of dynamical
systems.

Distributed formation control:

m No centralized controller for a given multi-agent system.

m Each agent has its own controller based on interaction with its
neighboring agents.

m Only the distances among agents are controlled by relative interactions;
— but a formation defined w.r.t a global coordinate frame is achieved.
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Rigid formation

L Background & problem statement

Problem statement

m Only local relative measurements

m Each node controls its neighbor edges only

m Control strategy for individual nodes?

m What are properties of graph for unique formation?
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Rigid formation
L Background & problem statement

Problem statement

m Not rigid (flex)
m Distances are fixed; but configuration is changed with external forces
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Rigid formation

L Background & problem statement

Problem statement
m Rigid
m Configuration does not change provided that the distances are fixed
even with external forces
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Rigid formation

L Background & problem statement

Problem statement

m Only distances are constrained
m Formation is fixed (rigid) or not-fixed (flex) ?
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Rigid formation
L Background & problem statement

Problem statement

m Agent model: m Overall task: Given
. pt =", eV’
pPi — U, l: 1,...,N,
Vi,j €V, |lpi—pill = lIpi —pi .
where p; € R" and u; € R".

m Sensed variables: Vj € N, llpi — pill = o — Pl

Pji =Pj = PinJ €ENi, i€V, m Desired invariant set:
where the superscript i denotes
that the variables are with
respect to the local reference - Also, ensure p; — 0 or p; < oc.
frames of agent i, and M is the

set of all neighbors of agent i.

Ey £ {p :|pi — pjll = lIp} — P} I}
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Rigid formation
L Background & problem statement

Graph rigidity

Given an undirected graph G = (V,€), where V = {1,...,N}, let us assign
p; € R" to each vertex iforalli € V.

m Realization: p = (p?,...,pl)T € R™, Framework: (G,p)
m Equivalence: Two frameworks (G, p) and (G, ¢g) are equivalent if

v (i,j) € &, lIpi — pill = llai — qll-

m Congruence: Two frameworks (G, p) and (G, g) are congruent if

VijeV, |pi—pill = llgi — gl

Definition (Rigidity)

A framework (G, p) is rigid if there exists a neighborhood U, of p such that all
frameworks equivalent to (G, p) are congruent in U,.

w= |If (G, p) is rigid, then the overall task and the local tasks are consistent.
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Rigid formation

L Distance-based approaches in 2D

I—A review of gradient control laws

Preliminaries: incident matrices

Consider an undirected graph G = (V, €).
m Incidence matrix: H = [h;] € RI¢IxIVI

(1, if vertex j is the sink vertex of edge i,
hij 2 { —1, ifvertexjis the source vertex of edge i,
0, otherwise;

m Edge partitioning: £ = £, UE_, where £, and £_ are disjoint and
(i,7) € £+ implies (j,i) € £_.

m Incidence matrix partitioning: H = [H., —H']", where H, is the
incidence matrix corresponding to & .

m Link:the link e = (ey,...,enn) € R"M/2 ¢, € £, of a framework (G, p)
is defined as (ex = p; — pj; k = (i,))):

e = (Hy ®@1I,)p.
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Rigid formation

L Distance-based approaches in 2D

I—A review of gradient control laws

Link space

m Notations A, = H, ® I,. In undirected graph (under gradient control
setups),weuse H=H, =H, ®l,=H_=H_&I,,andM/2 =m (i.e.,
cardinality of edges in undirected graph).

m Link space: The space Im(H’. ® I,) is referred to as the link space
associated with the framework (G, p).

m Edge function: We define a function vg : Im(H% @ I,) — RM/? as

vg(e) = (llerl”, - llems ).

which corresponds to the edge function gg parameterized in the link
space. That s, gg(p) = v¢((HL @ I,)p).

m Defining D as D(e) £ diag(ey, ..., ex/2), We obtain

dgg(p) Ovg(e) e _ T (yT
;;’p =— 5, ~ D (HL® 1)

Tutorial 13/82
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Rigid formation

L Distance-based approaches in 2D

I—A review of gradient control laws

Gradient control laws - Krick, Broucke & Francis, 2009

m A potential function ¢(p) as a function of g¢g — d*

5(p) = 5 llgg — |
m Withu = —(Vé(p))",
p=—HJ (vg(e) —d")
where J, = 2diag{e’ }.

m Control law for each agent is

: 1 «
pi=u = — Z i(Hesz_dj )ej

jeedges leaving i
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Rigid formation

L Distance-based approaches in 2D

I—A review of gradient control laws

Gradient control laws - Krick, Broucke & Francis, 2009

m The centroid p® = 1 5" p, is stationary: i.e., p° = 0.
m Conduct coordinate transformation

o

~ P o
p—[p]—Pp (1)

where P is an orthonormal matrix whose first two rows are %1T R .
m Equilibria

& = {plg(p) —d* =0} = {p[o(p) = 0}
& = {plJ} (g(p) —d*) =0}
£ = {p|Vo(p) =0}

It is noticeable that £, C & C £. The matrix HY is 2n x 2m, so if m > n,
the it has a nontrivial kernel.
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Rigid formation

L Distance-based approaches in 2D

I—A review of gradient control laws

Gradient control laws - Krick, Broucke & Francis, 2009

m |t is also possible to define equilibrium sets (target formations) for the
reduced state p such as

£ :={p e RN ?|v(Hp) —d* =0}

m The advantage of using &, rather than &, in the ensuing stability
analysis is that &£, iIs compact, whereas &, is not.

m Key idea: Via linearization = Center manifold theory
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Rigid formation

L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

Motivation & objective

m (G,p*) is infinitesimally rigid.
m Realization dimension: general n-dimension.

m Control law: generalized version of the gradient control law [Baillieul &
Suri, 2003].

m Lyapunov stability analysis of rigid formations of single-integrators in
n-dimensional space.

m Extension of the result to double-integrator formations.
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Rigid formation

L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

Generalized gradient control law

m Global potential function ¢:

Ak .
o) = Y vl —pill® = dj)

(iJ)EEL
where v : R — R Is positive definite and analytic in some

neighborhood of 0.
m Gradient control law:

p=u=—-Vo(p) = —k,(H, ®1,)D(e)T(d), (2)
where e £ (HL @ I,)p, d = (|le1||> — |lef 1%, - - - lemal* — He;\'}/sz) and

N A [ Ov(d) Oy (dy /2)
F(d)_( Tty g )
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Rigid formation

L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

Generalized gradient control law

m The gradient system is now described in the link space as follows:
¢ = (HL ®1L,)p
= —ky(H}, @ 1,)(Hy © 1,)D(e)T(d)

m For a given realization p* = [pi’ ---p3']" € R™, we define the desired
formation E,- of the agents as the set of formations that are congruent to

*

pr
Ey :={p € R"™ : |Ipj — pill = llpj —pil, Vi,j € V}. (3)
m Equilibrium set in position
Ey ={p e R" :|lpj—pill = llp/ —pill,V(i.j) € &4}
m Equilibrium set in the link space (compact)

E- ={e € Im(H ® L) : lel| = [lef[|,Vi=1,...,m}
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Rigid formation

L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

Generalized gradient control law

m Mainidea: E}. = E). = Ey« OrE;. = E,. <& E,« O E,. & E,. < Ep
m To analyze the stability of E.. , we define V : Im(HL ® I,) — R, as

Z 7 (leill* = llef 1) -

m The time-derivative of V can be arranged as

8‘(;9 e = —kpag—ie)(Hi @ 1,) (Hy @ 1,) D(e)T(d)

— &, [Dr@)] (H, @1,)7 (1, 1) D)D)

\ J/

Vie) =

—— Vo) = Vo)
= —k[IVo(p)|* <0,

which shows the local stability of E..
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Rigid formation

L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

Generalized gradient control law

m Then the local asymptotic stability of E.. can be ensured by showing
the existence of a neighborhood Uy, of E!. such that, for any e € Ug, ,

ife  E,- (or, e € E...), then V(e) < 0.

(Lojasiewicz’s inequality) Suppose thatf : D C R — R is a real analytic

function in a neighborhood of z € D. There exist constants k; > 0 and
pr € (0, 1) such that

IVFOOI = Kellf (x) = f(2) ]|

in some neighborhood of z.

AHS, School of Mechatronics,GIST
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Rigid formation

L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

Generalized gradient control law

Lemma

For any p € E,., there exists a neighborhood U, of p such that, for any
p € Uy andp & E}., | Vo(p)|| > 0.

Since v is analytic in some neighborhood of 0, for any p € E,., there exists a
neighborhood of p such that ¢ is analytic in the neighborhood. Thus it
follows from Theorem 2 that there exist k, > 0, p, € [0,1), and a
neighborhood Uj; of p such that

V()] > kolld(p) — S@)17* = koll(p)**.

for all p € U;. Further, ¢(p) = 0 if and only if p € E,. by the positive
definiteness of . Thus, forany p € U, and p € E,., ||[Vo(p)|| > 0. ]

Tutorial 23/82
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Rigid formation

L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

Generalized gradient control law

Lemma

For any p € E,., there exists a neighborhood U, of p such that, for any
p € Uy andp & E}., | Vo(p)|| > 0.

Since + is analytic in some neighborhood of 0, for any p € E)., there exists a
neighborhood of p such that ¢ is analytic in the neighborhood. Thus it
follows from Theorem 2 that there exist k, > 0, p, € [0,1), and a
neighborhood Uj; of p such that

V()] > kolld(p) — S@)17* = koll(p)**.

for all p € U;. Further, ¢(p) = 0 if and only if p € E,. by the positive
definiteness of . Thus, forany p € U, and p € E,., ||[Vo(p)|| > 0. ]
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Rigid formation

L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

Generalized gradient control law

Lemma

For any p € E,., there exists a neighborhood U, of p such that, for any
p € Uy andp & E}., | Vo(p)|| > 0.

Since v is analytic in some neighborhood of 0, for any p € E,., there exists a
neighborhood of p such that ¢ is analytic in the neighborhood. Thus it
follows from Theorem 2 that there exist k, > 0, ps € [0, 1), and a
neighborhood U; of p such that

V() = kellé(p) — 6@ = kollo(p)II"*.

for all p € U;. Further, ¢(p) = 0 if and only if p € E,. by the positive
definiteness of . Thus, forany p € U, and p € E,., ||[Vo(p)|| > 0. ]
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Rigid formation

L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

Generalized gradient control law

Lemma

For any p € E,., there exists a neighborhood U, of p such that, for any
p € Uy andp & E}., | Vo(p)|| > 0.

Since v is analytic in some neighborhood of 0, for any p € E,., there exists a
neighborhood of p such that ¢ is analytic in the neighborhood. Thus it
follows from Theorem 2 that there exist k, > 0, p, € [0,1), and a
neighborhood Uj; of p such that

V()] > kolld(p) — S@)17* = koll(p)**.

for all p € U;. Further, ¢(p) = 0 if and only if p € E,. by the positive
definiteness of v. Thus, forany p € U, andp € E)., |[Vé(p)|| > 0. ]
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Rigid formation

L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

Generalized gradient control law

The local asymptotic stability of £7. is then ensured based on Lemma 6 as
follows:

The set E,,. is locally asymptotically stable with respect to (2).
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Rigid formation
L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

We prove this theorem by showing that E’. is locally asymptotically stable.
To show the local asymptotic stability of E;., we construct a neighborhood of
E!. such that V(e) > 0 for any e in the neighborhood and V(e) = 0 if and only
ife c EL..

It follows from Lemma 6 that, for any p € E,., there exists a neighborhood
U, of p such that ||[Vo(p)|| > Oforallp € Uy andp € E,... We take r; > 0
such that

Dy :={p e R™ : |p—p| <r;} CUj.
Define

Up_(r.) :={e € Im(HL ®1,) : ir}if le —n| < r.}.
e ne é*

Let r¥ = opin(HY ® 1,)r;, where omin(HY ® I,) denotes the non-zero smallest
singular value of H! ® I,.
[]
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Rigid formation
L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

We prove this theorem by showing that E”. is locally asymptotically stable.
To show the local asymptotic stability of E.., we construct a neighborhood of
E'. such that V(e) > 0 for any e in the neighborhood and V(e) = 0 if and only
ife € E,..

It follows from Lemma 6 that, for any p € E,., there exists a neighborhood
U, of p such that ||[Vo(p)|| > Oforallp € Uy andp € E,... We take r; > 0
such that

Dy = {p R : |p—pll <7} C Uy,
Define

Up_(r.) :={e € Im(HL ®1,) : ir}if le —n| < r.}.
e ne é*

Let r¥ = opin(HY ® 1,)r;, where omin(HY ® I,) denotes the non-zero smallest
singular value of H! ® I,.
[]
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Rigid formation
L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

We prove this theorem by showing that E”. is locally asymptotically stable.
To show the local asymptotic stability of E;., we construct a neighborhood of
E!. such that V(e) > 0 for any e in the neighborhood and V(e) = 0 if and only
ife c EL..

It follows from Lemma 6 that, for any p € E/., there exists a neighborhood
U, of p such that ||[Vo(p)|| > Oforallp € Uy andp € E,... We take r; > 0
such that

Dy :={peR™ : |p—pl| <r;} C U
Define

Up_(r.) :={e € Im(HL ®1,) : ir}if le —n| < r.}.
e ne é*

Let r¥ = opin(HY ® 1,)r;, where omin(HY ® I,) denotes the non-zero smallest
singular value of H! ® I,.
[]
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Rigid formation
L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

We prove this theorem by showing that E”. is locally asymptotically stable.
To show the local asymptotic stability of E;., we construct a neighborhood of
E!. such that V(e) > 0 for any e in the neighborhood and V(e) = 0 if and only
ife c EL..

It follows from Lemma 6 that, for any p € E,., there exists a neighborhood
U, of p such that ||[Vo(p)|| > Oforallp € Uy andp € E,... We take r; > 0
such that

Dy = {p eR™: |p—p|| <7} C Uy (4)
Define

Ug: (re) :=={e € Im(H} ®1,) : ir}if le —n|| < r.}.
e ne L/*

Let 1} = oyin(HY ® I,)r;, where o0,,:,(H. ® I,) denotes the non-zero smallest

singular value of H! ® I,.
L]
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Rigid formation
L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

(Cont.) Then, for any e € Ug, (r;), there exists e € E,. such that

inf —nll=lle—cel|| < r’
inf el = e —el <

because E.. is compact and ||e — n|| is a continuous function of n. From the
fact that (e — e) € Im(H! ® I,), there always exist p € R™ and p € E/.. such
that (HL. ®I,)(p —p) =e—eand (p — p) € Im(H} ®1,). Since p — p belongs
to the row space of H} ® I,, we obtain

Omin(Hy ® 1) |lp — pIl < [le —e|

Thus we have ||p — p|| < =l < r%, which implies that p € Uj from (4).
min + n

It follows from Lemma 6that if e & E.., V(e) = —k,||Vé(p)|* < 0, which
implies that E;. is locally asymptotically stable. Thus E;. is locally
asymptotically stable with respect to (2). ]
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Rigid formation
L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

(Cont.) Then, for any e € Ug, (r;), there exists e € E;. such that

inf |le—n| =le—ce| <r,
nle%;* le —n| =|le—e| <7

because E.. is compact and ||e — n|| is a continuous function of n. From the
fact that (e — e) € Im(H!. ® I,), there always exist p € R™ and p € E/.. such
that (H,. ®I,)(p —p) =e—eand (p — p) € Im(H} ®1,). Since p — p belongs
to the row space of H} ® I,, we obtain

Omin(Hy ® 1) |lp — pIl < [le —e|

le—e]|
O'min(Hz;_ ®In)

It follows from Lemma 6that if e & E.., V(e) = —k,||Vé(p)|* < 0, which
implies that E;. is locally asymptotically stable. Thus E;. is locally
asymptotically stable with respect to (2). ]

Thus we have ||p — p|| < < r;, Which implies that p € Uj from (4).
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Rigid formation
L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

(Cont.) Then, for any e € Ug, (r;), there exists e € E;. such that

inf |le—n| =le—ce| <r,
nle%;* le —n| =|le—e| <7

because E.. is compact and ||e — n|| is a continuous function of . From the
fact that (e — e) € Im(H! ® I,), there always exist p € R™ and p € E/.. such
that (HY ® I,)(p —p) =e—eand (p —p) € Im(H} ®I,). Since p — p belongs
to the row space of H} ® I,, we obtain

Omin(Hy @ 1) — || < [le — ]|

Thus we have ||p — p|| < =l < r%, which implies that p € Uj from (4).
min + n

It follows from Lemma 6that if e & E.., V(e) = —k,||Vé(p)|* < 0, which
implies that E;. is locally asymptotically stable. Thus E;. is locally
asymptotically stable with respect to (2). ]
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Rigid formation
L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

(Cont.) Then, for any e € Ug, (r;), there exists e € E;. such that

inf |le—n| =le—ce| <r,
nle%;* le —n| =|le—e| <7

because E.. is compact and ||e — n|| is a continuous function of . From the
fact that (e — e) € Im(H! ® I,), there always exist p € R™ and p € E/.. such
that (HL. ®I,)(p —p) =e—eand (p — p) € Im(H} ®1,). Since p — p belongs
to the row space of H} ® I,, we obtain

Omin(Hy ® 1) |lp — pIl < [le —e|

Thus we have ||p — p[| < - ,”(eH_fégl) < r;, Which implies that p € U; from (4).
min _|_ n

It follows from Lemma 6that if e & E.., V(e) = —k,||Vé(p)|* < 0, which
implies that E;. is locally asymptotically stable. Thus E;. is locally
asymptotically stable with respect to (2). ]
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Rigid formation
L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

(Cont.) Then, for any e € Ug, (r;), there exists e € E;. such that

inf |le—n| =le—ce| <r,
nle%;* le —n| =|le—e| <7

because E.. is compact and ||e — n|| is a continuous function of . From the
fact that (e — e) € Im(H! ® I,), there always exist p € R™ and p € E/.. such
that (HL. ®I,)(p —p) =e—eand (p — p) € Im(H} ®1,). Since p — p belongs
to the row space of H} ® I,, we obtain

Omin(Hy ® 1) |lp — pIl < [le —e|

Thus we have ||p — p|| < =l < r%, which implies that p € Uj from (4).
min + n

It follows from Lemma 6thatif e ¢ E.., V(e) = —k,||Vo(p)|?* < 0, which
implies that E;. is locally asymptotically stable. Thus E,. is locally
asymptotically stable with respect to (2). ]
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L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

(Cont.) Then, for any e € Ug, (r;), there exists e € E;. such that

inf |le—n| =le—ce| <r,
nle%;* le —n| =|le—e| <7

because E.. is compact and ||e — n|| is a continuous function of . From the
fact that (e — e) € Im(H! ® I,), there always exist p € R™ and p € E/.. such
that (HL. ®I,)(p —p) =e—eand (p — p) € Im(H} ®1,). Since p — p belongs
to the row space of H} ® I,, we obtain

Omin(Hy ® 1) |lp — pIl < [le —e|

Thus we have ||p — p|| < =l < r%, which implies that p € Uj from (4).
min + n

It follows from Lemma 6that if e & E.., V(e) = —k,||Vé(p)|* < 0, which
implies that E;. is locally asymptotically stable. Thus £). is locally
asymptotically stable with respect to (2). ]
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Rigid formation

L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

Stability analysis

If (G, p*) is rigid, the set E,- is locally asymptotically stable with respect to
(2)-

From Theorem 7, E,. is locally asymptotically stable. Since (G, p*) is rigid, it
follows from the definition of the graph rigidity that, for any p € E,., there
exists a neighborhood Uj of p such that E,- N U; = E,.. N Up. This implies
that E,- is locally asymptotically stable with respect to (2). []
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Rigid formation

L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

Stability analysis

If (G, p*) is rigid, the set E,- is locally asymptotically stable with respect to
(2)-

From Theorem 7, E.. is locally asymptotically stable. Since (G, p*) is rigid, it
follows from the definition of the graph rigidity that, for any p € E,-, there
exists a neighborhood U; of p such that E,- N U, = E,. N Uy. This implies
that E,- is locally asymptotically stable with respect to (2). ]
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L Distance-based approaches in 2D

I—Stability of formations under generalized gradient-based control laws

Stability analysis

If (G, p*) is rigid, the set E,- is locally asymptotically stable with respect to
(2)-

From Theorem 7, E,. is locally asymptotically stable. Since (G, p*) is rigid, it
follows from the definition of the graph rigidity that, for any p € E,., there
exists a neighborhood Uj; of p such that E,- N U; = E,.. N Up. This implies
that E,- is locally asymptotically stable with respect to (2). []

40/82

Tutorial

AHS, School of Mechatronics,GIST



Rigid formation

L Distance-based approaches in 2D

L Formation control considering inter-agent distance dynamics

Table of contents

B Distance-based approaches in 2D

m Formation control considering inter-agent distance dynamics

AHS, School of Mechatronics,GIST Tutorial 41/82




Rigid formation

L Distance-based approaches in 2D

L Formation control considering inter-agent distance dynamics

Main idea

m Edges (inter-agent distances) are analyzed as control inputs
m Then, the control inputs for edges are separated into neighbor agents
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Inter-agent distance dynamics

The time-derivative of d;(= ||p; — p;||?) for any (i,j) € &:
d

dl]:E

(lpi —PJHZ) = g(Pi —PJ)T(ui - sz-

-~

Virtual control law uijé

Design procedure

(1) Design u;; to stabilize d;; such that d;; — d;;; (2) Then design u; and u; to

K
implement u;;.

m Virtual control input design:
wyj = —kq(dy — df) = dy(t) = e M'd) + (1 — e ")d;.
m Virtual control law vs. control law for the agents,
uy = 2(pi — p))" (i — ) = —kady, dyj = djy — dj;.
N s N~

By definition By design
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Three-agent case

Proposed control law for three-agent case:

4(p; —pi)lu; = kdgfija = ( (P —pi)’ ) " = @ ( glij
4(pi — pj) uj = kqd; ! s 4 \ d

For three-agents in the plane, if p® and p* are not collinear, then

m the proposed control law is nonsingular;
m the invariant set E; is globally asymptotically stable,

O Ell-j for all (i,j) € £ exponentially and monotonically converge to zero.
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General case

Givend = (...,d;,...) forall (i,j) € £, (G,d) is realizable if there exists a
realization (p?,...,pL)" € R™ such thatVi,j € V, ||p; — p;||* = dj-

Realizability problem

(G,d") and (G, d*) is realizable in two-dimension = (G, ad’ + (1 — «)d*),
where 0 < a < 1, is realizable in at most four-dimension [Havel et al., 1983].
= No control law such that u; = —k,(d;; — d;;).

The virtual control law : L
wy = —kq(dyy — d) gi\{es rise to a (pj —p))" | ui="2 d;i |,jeN;,
possibly over-determined system 4
of linear equations

\ .

Aié blé
Projection of %, to the column space of 4;

& Projection of the realization of (G, ad” + (1 — «)d*) to the plane

AHS, School of Mechatronics,GIST

Tutorial 45/82



Rigid formation

L Distance-based approaches in 2D

L Formation control considering inter-agent distance dynamics

General case

Proposed control law:

kg A
Aju; = ~2b; |
4
- in ||A;u; @b.||2
3 U, = all:tg;l;;n Ui — 4 ] Column space of 4,
k
= u; Z(ATA S (5)

Lemma

(Used for ensuring existence of control input) For N-agents, if (G, p) is
infinitesimally rigid in the plane, then the proposed control law is
nonsingular.
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Due to the infinitesimal rigidity of (G, p), the first leading principal minor of
ATA; is positive: D ien: (X —x;)* > 0foralli € V. Since N > 3 and agent i has
at least two neighboring agents due to the rigidity of (G, p), the second

leading principal minor of A!A; is also positive by the Cauchy-Schwarz
inequality:

Z(Xj - Xi)2 Z(yj — yi)2 — Z(Xj — xi)(yj — )’i) > (.

JEN, JEN; JEN;

The second leading principal minor of A'A; is zero if and only if

(...yxj—x;y...)and (...,y; —yi;,...),J € N;, are linearly dependent, which
implies that p; and p;, j € N, are collinear. It then follows from Sylvester’s

criterion that A A; is positive definite. Thus (A!A;)~! is positive definite by

the positive definiteness of A]A;.
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General case

Lemma

(Used for proving negative definiteness of the derivative of Lyapunov
function) Given an N-agent group, if (G, p*) is infinitesimally rigid, then there
exists a level set Q). = {e : V(e) < c} such that (R, (e))"R,, (e) is positive
definite for any e € Q. and (R, (e))'d # 0 forany e € Q. and e ¢ E,.

First, due to the infinitesimal rigidity of (G, p*), if a point p is sufficiently close
to E,, then (G, p) is infinitesimally rigid, which, together with Lemma 12,
implies that (R, (p))"R,, (p) is positive definite. Thus there exists a positive
constant p,,,, such that if p,... > p > 0, then (R, (¢))"R,, (e) is positive
definite forany e € Q, = {e: V(e) < p}. ]
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General case

Lemma

(Used for proving negative definiteness of the derivative of Lyapunov
function) Given an N-agent group, if (G, p*) is infinitesimally rigid, then there
exists a level set Q. = {e : V(e) < c} such that (R, (e))"R, (e) is positive
definite for any e € Q. and (R, (e))'d # 0 forany e € Q. and e ¢ E,.

First, due to the infinitesimal rigidity of (G, p*), if a point p is sufficiently close
to E,, then (G, p) is infinitesimally rigid, which, together with Lemma 12,
implies that (R, (p))"R,, (p) is positive definite. Thus there exists a positive
constant p,... such that if p,... > p > 0, then (R, (e))"R,, (e) is positive
definite forany e € 2, = {e : V(e) < p}. []
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(Cont.) Second, since ¢(p), which is the potential function, is a real analytic
function in some neighborhood of any p € E,, it follows from Theorem 2 that
there exist a neighborhood ¢/; of p and constants k; > 0 and p; € |0, 1) such
that

Vo)l = | = ke(Reg (p)) 'dll > Kpll6(p) — 6(P)]|””
for all p € U;. Since ¢(p) =0onlyif p € E,,
ke (Reg ()" dl| > Kpll o (p) [ > 0 (6)

forallp e U4 and p ¢ E,. Then, for any e € E,, we can take a neighborhood
U; of e such that

|(Rgg ()" dl| > 0

foralle e U; and e € E,. (]
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(Cont.) Second, since ¢(p), which is the potential function, is a real analytic
function in some neighborhood of any p € E,, it follows from Theorem 2 that
there exist a neighborhood 4; of p and constants k; > 0 and p; € |0, 1) such
that

Vo)l = | = ke(Reg (0)) "Il > K5l 6(p) — 6(P) |7
for all p € U;. Since ¢(p) =0onlyif p € E,,
ks (Reg () dll 2 k5| ¢(p) |7 > 0 (7)

forallp e U4 and p ¢ E,. Then, for any e € E,, we can take a neighborhood
U; of e such that

|(Rgg ()" dl| > 0

foralle e U; and e € E,. (]
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(Cont.) Second, since ¢(p), which is the potential function, is a real analytic
function in some neighborhood of any p € E,, it follows from Theorem 2 that
there exist a neighborhood ¢/; of p and constants k; > 0 and p; € |0, 1) such
that

Vo)l = || = ke(Reg () dl| = ksl 6(p) — 6(p)|1””
for all p € U5. Since ¢(p) =0onlyif p € E,,
ks (Reg () dll 2 Kyl ¢(p) |7 > 0 (8)

forallp e U andp ¢ E,. Then, for any e € E,, we can take a neighborhood
U of e such that

|(Rgg ()" dl| >0 (9)

forall e € U; and e € E,. (]
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(Cont.) Third, due to the compactness of E,, there exists a finite open cover
Ug, = |, U, such that (9) holds for all e € Ug, and e ¢ E,. That is, for any
ke{l,...,n}, ife el and e ¢ E., then (9) holds. Taking i/, and ¢ such
that 2. C Ug, and ¢ < p,.., €nsures that (R, (e)) "R, (e) is positive definite
for any e € Q. and (R, (e))'d # 0 forany e € Q. and e ¢ E,. (]
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(Cont.) Third, due to the compactness of E,, there exists a finite open cover
Ug, = |, U, such that (9) holds for all e € Ug, and e € E,. That is, for any
ke{l,...,n}, ife el and e & E,, then (9) holds. Taking /g, and ¢ such
that 2. C Ug, and ¢ < p,.., €nsures that (R, (e)) "R, (e) is positive definite
for any e € Q. and (R, (e))'d # 0 forany e € Q. and e ¢ E,. (]
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(Cont.) Third, due to the compactness of E,, there exists a finite open cover
Ug, = |, U, such that (9) holds for all e € Ug, and e ¢ E,. That is, for any
ked{l,...,n.}, ife el and e ¢ E,, then (9) holds. Taking i/, and ¢ such
that 2. C Ug, and ¢ < p,.., €nsures that (R, (¢)) "R, (e) is positive definite
for any e € Q. and (R, (e))'d # 0 forany e € Q. and e ¢ E,. ]
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General case

For N-agents, if (G, p*) is infinitesimally rigid in the plane, E,- is locally
asymptotically stable under the proposed control law.

Take V(e) = (ka/4) > jycellegll* — di)? as a Lyapunov function. The time
derivative of V(e) is then arranged as

V(e) = —kad Ry (€)((Rgg (€)) "Ryg (€)) ™" (R, () Td.

From Lemma 14, there exists a level set €2, such that (R, (¢)) R, (e) is
positive definite for any e € 2, and (R, (e))'d # 0 for any e € Q. and e ¢ E,.
Since V(e) is negative definite in €., E, is locally asymptotically stable,
which in turn implies the local asymptotic stability of E,,-. []
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General case

Given an N-agent group, if (G, p*) is infinitesimally rigid, then the control law
(5) achieves the asymptotic convergence of p to a point in E,,.

From Lemma 14, there exists a level set €2, such that (R, (¢)) R, (e) is
positive definite for any e € Q. and (R, (e))TZZ #0foranyec.ande ¢ E..
Since ((R,, (e)) Ry, (e))~! is positive definite in ., there exists a constant
My such that ||((Re, (¢)) Ry, (€))~!|l1 < Mg, where || - ||; denotes the induced
1-norm of matrices. It can be followed by using the result from [Krick et al.
-2009, IJC] that u(t) = —(ka/4k,) (R, (€))TRe, (€)™ lug(2) also belongs to L,
space. Thus p asymptotically converges to a point in E,. ]

Tutorial 57/82

AHS, School of Mechatronics,GIST




Rigid formation

L Distance-based approaches in 2D

L Formation control considering inter-agent distance dynamics

General case

Given an N-agent group, if (G, p*) is infinitesimally rigid, then the control law
(5) achieves the asymptotic convergence of p to a point in E,,.

From Lemma 14, there exists a level set €2, such that (R, (¢)) R, (e) is
positive definite for any e € Q. and (R, (e))TZZ #0foranyec.ande ¢ E..
Since ((R,, (e)) Ry, (e))~! is positive definite in ., there exists a constant
My such that ||((Re, (¢)) Ry, (€))~!|l1 < Mg, where || - ||; denotes the induced
1-norm of matrices. It can be followed by using the result from [Krick et al.
-2009, IJC] that u(t) = —(ka/4k,)((R,, (€))"R,, (€)) ~'u,(t) also belongs to £,
space. Thus p asymptotically converges to a point in E,. []
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Notation

m Relative displacements: z; = p, — p1,

Z; = P3 —Pi1,2Z3 = P4 — P1

m Asquare matrix: Z = |z; z, 3.

m Remark that 1| detZ| is the volume of the

tetrahedron in the figure.
m Squared-distance error:

eii(1) = |Ipi(1) — pi(1)[|* — dj,

where dij = le — l_)jH, \V/(l,]T) c £.
Define e = [812 634] .

V(i,J)

e &,

m Assumption for simplification: d;; = d > 0,

V(i.j) € €
= a regular tetrahedron shape.

AHS, School of Mechatronics,GIST
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Gradient-descent law

m A potential function: ¢(p) =

m Objective: lim,_, ., ¢(p(t)) = 0,
lim,_, ., p(¢) = a finite point.

m Gradient-descent law:

T

9,

u=-—-Vop==— lﬁ—ﬁ] :—Rge (10)

I €12Z1 1+ €132y + €14Z3 ]
(—612 — €23 — 624)Z1 + €23Z) + €473 (1 1)
€321 + (—ey3 — ex3 — e34)Zn + e34Z3

| €24Z1 T €347y T+ (—e1s — e — 634)23_

SVieV,w=) (|

ien (1P = ill* — @*)(p; — pi), where ) is the set of
neighbors of i.
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Equilibrium states

w= > (Ipj—pill> —&*)(p — pi) £ 0} + 0} +u;.
JEN;

m Desired equilibrium state: ||p; — pi|| =4, V(i,j) € &.
m Undesired equilibrium state: 3(i,j) € &, ||p; — pill #d, Vk € V, u;, = 0.

AHS, School of Mechatronics,GIST Tutorial 63/82




Rigid formation

L Four-agent formations in 3-D

L Regular tetrahedron shape

Some sets

m Equilibrium sets:
Q= {pER3|V|: v¢:0},
D — {pER3|V|: ezo},
U:Q\D:{p€R3|V|: V¢:0,e7é0}.
m A set by collinear agents:
C = {p e RV etz = o}.

= all agents exist on a plane.
m Analysis on ¢:

dp 09
dt  Op

= lim;_,, V¢ = 0 = p(z) approaches Q(=D UU).

p=—||Vé|* <0, p=u=-Vo.
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Attractiveness of the equilibrium sets

m Two cases:

lim, ..,e=0 = p(¢) approaches D.
lim V¢ =0 and or
e lim,,oce £ 0 = p(¢) approaches .

m Note that ¢ is zero if and only if u = 0.

m Since z,, z, and z; exist in R?, if they are linearly independent, then
p = 0 implies that e = 0 from (11).

Lemma

Ifp € U, thenz,, 7, and z; are linearly dependent.

m Lemma 18 means that any formation, with e == 0, formed by Vp € U/
should exist on a plane due to the linear dependence of z,, z, and zs,
which means that detZ = 0. Hence, U C C.
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Repulsiveness of the undesired equilibrium set

m We have
d

t
P detZ = —20detZ = detZ =exp {—2/ o(p(s)) ds} det 7,
0

where detZyisdetZ atr =0, and o = Z(iJ)Eg ej.
m If I/ is attractive, then det Z converges to 0 because U/ C C.

t
detZ = exp [—2/ a(p(s)) ds] det Zy,
0

\ 7
-~

>0

m ltis true that detZ # 0 for all + > 0 if and only if detZy # 0.
m There is a neighborhood of &/ in which o < 0 for all p.
m exp|-| does not converges to zero, which contradicts to the hypothesis.

Ifp(0) ¢ C, then p(t) is bounded away from U for all t > 0.
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Main theorem

For a given regular tetrahedral formation (G, p) and the gradient-descent
law, the realization p(t) converges to a finite point which is congruent to p if
and only if the initial condition p(0) satisfies p(0) ¢ C.

Corollary

The realization p(¢) approaches U/ if
p(0) € C.

m >: a neighborhood of /.
m 0X: the boundary of ..
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Assumptions

m Quadratic potential function: V(p) = 3 3=, ce €
m Gradient-descent law:

, oVl
b= — [%] — R()e(p) = —(E() ® L)p. (12)
m No mismatched desired distances.

_pi—pg py —pl 0 0 ]

P e S I B

1 Oe P — D 0 0 Pi— D
R £ 77 1 4 4 1 . 13
P30 0  p—p3 Ps—p O 19

0 pr-pl 0 pi-p!

0 0  pi—ph pf—pt

m Further we assume that R(p) has full row rank, which is equivalent that
the framework (K4, p) is rigid' (i.e., m = 3n-6).
TRigorously say, infinitesimally rigid
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Existing Result

m p(¢) approaches equilibrium set as t — oc.
m The origin of the error dynamics is (locally) exponentially stable.

V= —eRR"e < —4 [Amin(RR")] V < 0. (14)

m The matrix RR' is positive definite near the desired formation shape from
the assumption on p. = Amin(RR") > 0.

AHS, School of Mechatronics,GIST Tutorial 70/82




Rigid formation

L Four-agent formations in 3-D

I—General tetrahedron shape

Analysis on Incorrect Equilibria

m Consider incorrect equilibrium set given by

Pi={p e RV p = —[R(p)"e(p) = ~(E(p) @ L)p = 0, e(p) 0} .
(15)
m Linearization:
o[ ov]'
% [_8—19] = —Hy(p), (16)

where Hy is the Hessian matrix of V by definition.
m Investigate the existence of negative eigenvalue(s) of Hy.
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Analysis on Incorrect Equilibria

m Let p* be an element in the incorrect equilibrium set. With an
appropriate transformation, we have

X X 0
Hy(p*) = | x X 0 . (17)
0 0 E(p*)_

m Show the existence of negative eigenvalu(s) of E(p*), which can be
done by finding a vector x such that x' [E(p*) ® L3]x < 0.

m Actually, we have

MEp)@Blx=— > [e;(p*)]* <0, (18)
(i,)EeE

for x = p.
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Main Result |

For almost every initial condition in R3\V!, the trajectory p(t) converges to the
desired equilibrium set P, where P; = {p € R3IVI: e(p) = 0}.

. 2
By taking the derivative of V, we have V = g—gp = — H ‘g—g H < 0, which

results in that r; and e;; are bounded for all i, j € V. From the boundedness
of r; and e;;, we can also show that V is bounded so V(p(t)) is uniformly
continuous in t on [f, co) with an initial time 7. Since V(p(z)) is a
non-increasing lower bounded function, the limit of V(p(z)) exists. Therefore,
V(p(r)) converges to 0 as + — oo from Barbalat’s lemma, which means that
p(t) approaches either P, or P;. The instability of the incorrect equilibrium
set P; has been previously shown. Therefore, for almost every initial
condition in R3V!| p(¢) approaches P,. ]
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Main Result Il

m Consider Z(p) = [r1n ri3 ri4] € R**3, where r; = p; — p;. Let
A(p(r)) = det Z(p(1))
m |A| is proportional to the volume occupied by the tetrahedron in R>.
m We can show that A(p*) = 0 for any p* in the incorrect equilibrium set.

m Suppose that (K4, p*) is a point formation or has a planner shape.
m We can show that A(p(z)) cannot converge to 0 if p(0) is not in
C={peRM.Ap) =0}
m Suppose that (K4, p*) is a line formation.

m We can show that p(7) is able to converge to p™ only if (IC4,p) is a line
formation.

Corollary

The region of attraction for the desired equilibrium set P, is R3VI '\ C.
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Rigid graphs in 2-D

m We have solved K4 in 3-D: but can we extend the resulis in 3-D into
2-D?

m Minimally infinitesimal rigid graph with four agents into 2-D?
m General minimally rigid graph in 2-D?
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Rigid graphs in 2-D

O BB

Solved Not solved (partially) K4: Not solved
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Persistence + global rigidity
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