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Rigid formation

Background & problem statement

Multi-agent systems & Distributed formation control

Agents and multi-agent systems:

An agent is understood as a dynamical system.
A multi-agent system is a collection, a group, or a team of dynamical
systems.

Distributed formation control:

No centralized controller for a given multi-agent system.
Each agent has its own controller based on interaction with its
neighboring agents.
Only the distances among agents are controlled by relative interactions;
→ but a formation defined w.r.t a global coordinate frame is achieved.
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Rigid formation

Background & problem statement

Problem statement

Only local relative measurements
Each node controls its neighbor edges only
Control strategy for individual nodes?
What are properties of graph for unique formation?
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Rigid formation

Background & problem statement

Problem statement

Not rigid (flex)
Distances are fixed; but configuration is changed with external forces
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Rigid formation

Background & problem statement

Problem statement

Rigid
Configuration does not change provided that the distances are fixed
even with external forces
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Rigid formation

Background & problem statement

Problem statement

Only distances are constrained
Formation is fixed (rigid) or not-fixed (flex) ?
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Rigid formation

Background & problem statement

Problem statement

Agent model:

ṗi = ui, i = 1, . . . ,N,

where pi ∈ R
n and ui ∈ R

n.
Interaction graph: G = (V, E).
Sensed variables:

pi
ji = pi

j − pi
i, j ∈ Ni, i ∈ V,

where the superscript i denotes
that the variables are with
respect to the local reference
frames of agent i, and Ni is the
set of all neighbors of agent i.

Overall task: Given
p∗ = (p∗T

1 , . . . , p∗T
N )T ,

∀i, j ∈ V, ‖pi − pj‖ → ‖p∗i − p∗j ‖.

Local task for agent i:

∀j ∈ Ni, ‖pi − pj‖ → ‖p∗i − p∗
j ‖.

Desired invariant set:

Ep∗ � {p : ‖pi − pj‖ = ‖p∗
i − p∗

j ‖}.

- Also, ensure ṗi → 0 or ṗi < ∞.
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Rigid formation

Background & problem statement

Graph rigidity
Given an undirected graph G = (V, E), where V = {1, . . . ,N}, let us assign
pi ∈ R

n to each vertex i for all i ∈ V.

Realization: p = (pT
1 , . . . , pT

N)
T ∈ R

nN , Framework: (G, p)
Equivalence: Two frameworks (G, p) and (G, q) are equivalent if

∀ (i, j) ∈ E , ‖pi − pj‖ = ‖qi − qj‖.
Congruence: Two frameworks (G, p) and (G, q) are congruent if

∀ i, j ∈ V, ‖pi − pj‖ = ‖qi − qj‖.

Definition (Rigidity)

A framework (G, p) is rigid if there exists a neighborhood Up of p such that all
frameworks equivalent to (G, p) are congruent in Up.

� If (G, p) is rigid, then the overall task and the local tasks are consistent.
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Rigid formation

Distance-based approaches in 2D

A review of gradient control laws

Preliminaries: incident matrices

Consider an undirected graph G = (V, E).
Incidence matrix: H = [hij] ∈ R

|E|×|V|

hij �

⎧⎨
⎩

1, if vertex j is the sink vertex of edge i,
−1, if vertex j is the source vertex of edge i,
0, otherwise;

Edge partitioning: E = E+ ∪ E−, where E+ and E− are disjoint and
(i, j) ∈ E+ implies (j, i) ∈ E−.
Incidence matrix partitioning: H = [HT

+,−HT
+]

T , where H+ is the
incidence matrix corresponding to E+.
Link: the link e = (e1, . . . , eM/2) ∈ R

n(M/2), ei ∈ E+, of a framework (G, p)
is defined as (ek = pi − pj; k = (i, j)):

e � (HT
+ ⊗ In)p.
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Rigid formation

Distance-based approaches in 2D

A review of gradient control laws

Link space

Notations Ĥ+ = H+ ⊗ In. In undirected graph (under gradient control
setups), we use Ĥ = Ĥ+ = H+ ⊗ In = Ĥ− = H− ⊗ In, and M/2 = m (i.e.,
cardinality of edges in undirected graph).
Link space: The space Im(HT

+ ⊗ In) is referred to as the link space
associated with the framework (G, p).
Edge function: We define a function vG : Im(HT

+ ⊗ In) → R
M/2 as

vG(e) � (‖e1‖2, . . . , ‖eM/2‖2),

which corresponds to the edge function gG parameterized in the link
space. That is, gG(p) = vG((HT

+ ⊗ In)p).

Defining D as D(e) � diag(e1, . . . , eM/2), we obtain

∂gG(p)
∂p

=
∂vG(e)
∂e

∂e
∂p

= [D(e)]T(HT
+ ⊗ In).
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Rigid formation

Distance-based approaches in 2D

A review of gradient control laws

Gradient control laws - Krick, Broucke & Francis, 2009

A potential function φ(p) as a function of gG − d∗

φ(p) =
1
2
‖gG − d∗‖

With u = −(∇φ(p))T ,

ṗ = −HT
+JT

v (vG(e)− d∗)

where Jv = 2diag{eT
i }.

Control law for each agent is

ṗi = ui = −
∑

j∈edges leaving i

1
2
(‖ej‖2 − d∗

j )ej
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Rigid formation

Distance-based approaches in 2D

A review of gradient control laws

Gradient control laws - Krick, Broucke & Francis, 2009

The centroid po = 1
n

∑n
i=1 pp is stationary: i.e., ṗo = 0.

Conduct coordinate transformation

p̃ =

[
po

p̄

]
= Pp (1)

where P is an orthonormal matrix whose first two rows are 1
n 1T ⊗ I2.

Equilibria

E1 := {p|g(p)− d∗ = 0} = {p|φ(p) = 0}
E2 := {p|JT

v (g(p)− d∗) = 0}
E := {p|∇φ(p) = 0}

It is noticeable that E1 ⊂ E2 ⊂ E . The matrix HT
+ is 2n × 2m, so if m > n,

the it has a nontrivial kernel.
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Rigid formation

Distance-based approaches in 2D

A review of gradient control laws

Gradient control laws - Krick, Broucke & Francis, 2009

It is also possible to define equilibrium sets (target formations) for the
reduced state p̄ such as

Ē1 := {p ∈ R
2N−2|v(H̄p̄)− d∗ = 0}

The advantage of using Ē1 rather than E1 in the ensuing stability
analysis is that Ē1 is compact, whereas E1 is not.
Key idea: Via linearization =⇒ Center manifold theory
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Rigid formation

Distance-based approaches in 2D

Stability of formations under generalized gradient-based control laws

Motivation & objective

Assumptions:

(G, p∗) is infinitesimally rigid.
Realization dimension: general n-dimension.
Control law: generalized version of the gradient control law [Baillieul &
Suri, 2003].

Objectives:

Lyapunov stability analysis of rigid formations of single-integrators in
n-dimensional space.
Extension of the result to double-integrator formations.
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Rigid formation

Distance-based approaches in 2D

Stability of formations under generalized gradient-based control laws

Generalized gradient control law

Global potential function φ:

φ(p) � kp

2

∑
(i,j)∈E+

γ
(‖pj − pi‖2 − d∗

ji

)
,

where γ : R → R≥0 is positive definite and analytic in some
neighborhood of 0.
Gradient control law:

ṗ = u = −∇φ(p) = −kp (H+ ⊗ In)D(e)Γ(d̃), (2)

where e � (HT
+ ⊗ In)p, d̃ = (‖e1‖2 − ‖e∗1‖2, . . . , ‖eM/2‖2 − ‖e∗M/2‖2) and

Γ(d̃) �
(

∂γ(d̃1)

∂d̃1
, . . . ,

∂γ(d̃M/2)

∂d̃M/2

)
.
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Rigid formation

Distance-based approaches in 2D

Stability of formations under generalized gradient-based control laws

Generalized gradient control law

The gradient system is now described in the link space as follows:

ė = (HT
+ ⊗ In)ṗ

= −kp(HT
+ ⊗ In)(H+ ⊗ In)D(e)Γ(d̃)

For a given realization p∗ = [p∗T
1 · · · p∗T

N ]T ∈ R
nN , we define the desired

formation Ep∗ of the agents as the set of formations that are congruent to
p∗:

Ep∗ := {p ∈ R
nN : ‖pj − pi‖ = ‖p∗

j − p∗
i ‖, ∀i, j ∈ V}. (3)

Equilibrium set in position

E′
p∗ = {p ∈ R

nN : ‖pj − pi‖ = ‖p∗
j − p∗

i ‖, ∀(i, j) ∈ E+}
Equilibrium set in the link space (compact)

E′
e∗ = {e ∈ Im(HT

+ ⊗ In) : ‖ei‖ = ‖e∗i ‖, ∀i = 1, . . . ,m}
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Rigid formation

Distance-based approaches in 2D

Stability of formations under generalized gradient-based control laws

Generalized gradient control law

Main idea: E′
e∗ ⇒ E′

p∗ ⇒ Ep∗ or E′
e∗ ⇒ E′

p∗ ⇔ Ep∗ or E′
e∗ ⇔ E′

p∗ ⇔ Ep∗

To analyze the stability of E′
e∗ , we define V : Im(HT

+ ⊗ In) → R̄+ as

V(e) :=
M∑

i=1

1
2
γ
(‖ei‖2 − ‖e∗i ‖2) .

The time-derivative of V can be arranged as

V̇(e) =
∂V(e)
∂e

ė = −kp
∂V(e)
∂e

(HT
+ ⊗ In) (H+ ⊗ In)D(e)Γ(d̃)

= −kp

[
D(e)Γ(d̃)

]T
(H+ ⊗ In)

T

︸ ︷︷ ︸
=−[∇φ(p)]T

(H+ ⊗ In)D(e)Γ(d̃)︸ ︷︷ ︸
=−∇φ(p)

= −kp‖∇φ(p)‖2 ≤ 0,

which shows the local stability of E′
e∗ .

AHS, School of Mechatronics,GIST Tutorial 21/82



Rigid formation

Distance-based approaches in 2D

Stability of formations under generalized gradient-based control laws

Generalized gradient control law

Then the local asymptotic stability of E′
e∗ can be ensured by showing

the existence of a neighborhood UE′
e∗

of E′
e∗ such that, for any e ∈ UE′

e∗
,

if e �∈ Ee∗ (or, e �∈ E′
e∗ ), then V̇(e) < 0.

Theorem

(Lojasiewicz’s inequality) Suppose that f : D ⊆ R
nf → R is a real analytic

function in a neighborhood of z ∈ D. There exist constants kf > 0 and
ρf ∈ [0, 1) such that

‖∇f (x)‖ ≥ kf ‖f (x)− f (z)‖ρf

in some neighborhood of z.
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Rigid formation

Distance-based approaches in 2D

Stability of formations under generalized gradient-based control laws

Generalized gradient control law

Lemma

For any p̄ ∈ E′
p∗ , there exists a neighborhood Up̄ of p̄ such that, for any

p ∈ Up̄ and p �∈ E′
p∗ , ‖∇φ(p)‖ > 0.

Proof.

Since γ is analytic in some neighborhood of 0, for any p̄ ∈ E′
p∗ , there exists a

neighborhood of p̄ such that φ is analytic in the neighborhood. Thus it
follows from Theorem 2 that there exist kφ > 0, ρφ ∈ [0, 1), and a
neighborhood Up̄ of p̄ such that

‖∇φ(p)‖ ≥ kφ‖φ(p)− φ(p̄)‖ρφ = kφ‖φ(p)‖ρφ .

for all p ∈ Up̄. Further, φ(p) = 0 if and only if p ∈ E′
p∗ by the positive

definiteness of γ. Thus, for any p ∈ Up̄ and p �∈ E′
p∗ , ‖∇φ(p)‖ > 0.
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Distance-based approaches in 2D

Stability of formations under generalized gradient-based control laws

Generalized gradient control law

Lemma
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Distance-based approaches in 2D

Stability of formations under generalized gradient-based control laws

Generalized gradient control law
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Distance-based approaches in 2D

Stability of formations under generalized gradient-based control laws

Generalized gradient control law
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Rigid formation

Distance-based approaches in 2D

Stability of formations under generalized gradient-based control laws

Generalized gradient control law

The local asymptotic stability of E′
p∗ is then ensured based on Lemma 6 as

follows:

Theorem

The set E′
p∗ is locally asymptotically stable with respect to (2).
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Rigid formation

Distance-based approaches in 2D

Stability of formations under generalized gradient-based control laws

Proof.

We prove this theorem by showing that E′
e∗ is locally asymptotically stable.

To show the local asymptotic stability of E′
e∗ , we construct a neighborhood of

E′
e∗ such that V̇(e) ≥ 0 for any e in the neighborhood and V̇(e) = 0 if and only

if e ∈ E′
e∗ .

It follows from Lemma 6 that, for any p̄ ∈ E′
p∗ , there exists a neighborhood

Up̄ of p̄ such that ‖∇φ(p)‖ > 0 for all p ∈ Up̄ and p �∈ E′
p∗ . We take r∗p > 0

such that

Dr∗p := {p ∈ R
nN : ‖p − p̄‖ < r∗p} ⊆ Up̄.

Define

UE′
e∗
(re) := {e ∈ Im(HT

+ ⊗ In) : inf
η∈E′

e∗
‖e − η‖ < re}.

Let r∗e = σmin(HT
+ ⊗ In)r∗p , where σmin(HT

+ ⊗ In) denotes the non-zero smallest
singular value of HT

+ ⊗ In.
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Distance-based approaches in 2D

Stability of formations under generalized gradient-based control laws

Proof.
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Distance-based approaches in 2D

Stability of formations under generalized gradient-based control laws

Proof.

We prove this theorem by showing that E′
e∗ is locally asymptotically stable.
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e∗ , we construct a neighborhood of

E′
e∗ such that V̇(e) ≥ 0 for any e in the neighborhood and V̇(e) = 0 if and only
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Distance-based approaches in 2D

Stability of formations under generalized gradient-based control laws

Proof.

We prove this theorem by showing that E′
e∗ is locally asymptotically stable.

To show the local asymptotic stability of E′
e∗ , we construct a neighborhood of

E′
e∗ such that V̇(e) ≥ 0 for any e in the neighborhood and V̇(e) = 0 if and only

if e ∈ E′
e∗ .

It follows from Lemma 6 that, for any p̄ ∈ E′
p∗ , there exists a neighborhood

Up̄ of p̄ such that ‖∇φ(p)‖ > 0 for all p ∈ Up̄ and p �∈ E′
p∗ . We take r∗p > 0

such that

Dr∗p := {p ∈ R
nN : ‖p − p̄‖ < r∗p} ⊆ Up̄. (4)

Define

UE′
e∗
(re) := {e ∈ Im(HT

+ ⊗ In) : inf
η∈E′

e∗
‖e − η‖ < re}.

Let r∗e = σmin(HT
+ ⊗ In)r∗p , where σmin(HT

+ ⊗ In) denotes the non-zero smallest
singular value of HT

+ ⊗ In.
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Distance-based approaches in 2D

Stability of formations under generalized gradient-based control laws

Proof.

(Cont.) Then, for any e ∈ UE′
e∗
(r∗e ), there exists ē ∈ E′

e∗ such that

inf
η∈E′

e∗
‖e − η‖ = ‖e − ē‖ < r∗e

because E′
e∗ is compact and ‖e − η‖ is a continuous function of η. From the

fact that (e − ē) ∈ Im(HT
+ ⊗ In), there always exist p ∈ R

nN and p̄ ∈ E′
p∗ such

that (HT
+ ⊗ In)(p − p̄) = e − ē and (p − p̄) ∈ Im(HT

+ ⊗ In). Since p − p̄ belongs
to the row space of HT

+ ⊗ In, we obtain

σmin(HT
+ ⊗ In)‖p − p̄‖ ≤ ‖e − ē‖

Thus we have ‖p − p̄‖ ≤ ‖e−ē‖
σmin(HT

+⊗In)
< r∗p , which implies that p ∈ Up̄ from (4).

It follows from Lemma 6 that if e �∈ E′
e∗ , V̇(e) = −kp‖∇φ(p)‖2 < 0, which

implies that E′
e∗ is locally asymptotically stable. Thus E′

p∗ is locally
asymptotically stable with respect to (2).
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Stability of formations under generalized gradient-based control laws
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+ ⊗ In). Since p − p̄ belongs
to the row space of HT
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Thus we have ‖p − p̄‖ ≤ ‖e−ē‖
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σmin(HT

+⊗In)
< r∗p , which implies that p ∈ Up̄ from (4).

It follows from Lemma 6 that if e �∈ E′
e∗ , V̇(e) = −kp‖∇φ(p)‖2 < 0, which

implies that E′
e∗ is locally asymptotically stable. Thus E′

p∗ is locally
asymptotically stable with respect to (2).

AHS, School of Mechatronics,GIST Tutorial 37/82



Rigid formation

Distance-based approaches in 2D

Stability of formations under generalized gradient-based control laws

Stability analysis

Theorem

If (G, p∗) is rigid, the set Ep∗ is locally asymptotically stable with respect to
(2).

Proof.

From Theorem 7, E′
p∗ is locally asymptotically stable. Since (G, p∗) is rigid, it

follows from the definition of the graph rigidity that, for any p̄ ∈ Ep∗ , there
exists a neighborhood Up̄ of p̄ such that Ep∗ ∩ Up̄ = E′

p∗ ∩ Up̄. This implies
that Ep∗ is locally asymptotically stable with respect to (2).
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Main idea

Edges (inter-agent distances) are analyzed as control inputs
Then, the control inputs for edges are separated into neighbor agents
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Inter-agent distance dynamics
The time-derivative of dij(� ‖pi − pj‖2) for any (i, j) ∈ E :

ḋij =
d
dt
(‖pi − pj‖2) = 2(pi − pj)

T(ui − uj)︸ ︷︷ ︸
Virtual control law uij�

.

Design procedure

(1) Design uij to stabilize dij such that dij → d∗
ij ; (2) Then design ui and uj to

implement uij.

Virtual control input design:

uij = −kd(dij − d∗
ij) � dij(t) = e−kdtd0

ij + (1 − e−kdt)d∗
ij .

Virtual control law vs. control law for the agents,

uij = 2(pi − pj)
T(ui − uj)︸ ︷︷ ︸

By definition

= −kdd̃ij︸ ︷︷ ︸
By design

, d̃ij = dij − d∗
ij .
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Three-agent case

Proposed control law for three-agent case:

4(pj − pi)
Tui = kdd̃ij,

4(pi − pj)
Tuj = kdd̃ij

�
(

(pj − pi)
T

(pk − pi)
T

)
︸ ︷︷ ︸

Ai�

ui =
kd

4

(
d̃ij

d̃ik

)
︸ ︷︷ ︸

bi�

� ui =
kd

4
A−1

i bi.

Theorem

For three-agents in the plane, if p0 and p∗ are not collinear, then
the proposed control law is nonsingular;
the invariant set E∗

p is globally asymptotically stable;

d̃ij for all (i, j) ∈ E exponentially and monotonically converge to zero.
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General case

Given d = (. . . , dij, . . .) for all (i, j) ∈ E , (G, d) is realizable if there exists a
realization (pT

1 , . . . , pT
N)

T ∈ R
nN such that ∀i, j ∈ V, ‖pi − pj‖2 = dij.

Realizability problem

(G, d0) and (G, d∗) is realizable in two-dimension ⇒ (G, αd0 + (1 − α)d∗),
where 0 ≤ α ≤ 1, is realizable in at most four-dimension [Havel et al., 1983].
� No control law such that uij = −kd(dij − d∗

ij).

The virtual control law
uij = −kd(dij − d∗

ij) gives rise to a
possibly over-determined system
of linear equations

⎛
⎜⎜⎝

...
(pj − pi)

T

...

⎞
⎟⎟⎠

︸ ︷︷ ︸
Ai�

ui =
kd

4

⎛
⎜⎜⎝

...
d̃ij
...

⎞
⎟⎟⎠

︸ ︷︷ ︸
bi�

, j ∈ Ni,

Projection of kd
4 bi to the column space of Ai

⇔ Projection of the realization of (G, αd0 + (1 − α)d∗) to the plane
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General case

Proposed control law:

Aiui =
kd

4
bi

� ui = argmin
ui∈R2

‖Aiui − kd

4
bi‖2

� ui =
kd

4
(AT

i Ai)
−1AT

i bi (5)

Lemma

(Used for ensuring existence of control input) For N-agents, if (G, p) is
infinitesimally rigid in the plane, then the proposed control law is
nonsingular.
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Proof.

Due to the infinitesimal rigidity of (G, p), the first leading principal minor of
AT

i Ai is positive:
∑

j∈Ni
(xj − xi)

2 > 0 for all i ∈ V. Since N ≥ 3 and agent i has
at least two neighboring agents due to the rigidity of (G, p), the second
leading principal minor of AT

i Ai is also positive by the Cauchy-Schwarz
inequality:

∑
j∈Ni

(xj − xi)
2
∑
j∈Ni

(yj − yi)
2 −

⎛
⎝∑

j∈Ni

(xj − xi)(yj − yi)

⎞
⎠

2

> 0.

The second leading principal minor of AT
i Ai is zero if and only if

(. . . , xj − xi, . . .) and (. . . , yj − yi, . . .), j ∈ Ni, are linearly dependent, which
implies that pi and pj, j ∈ Ni, are collinear. It then follows from Sylvester’s
criterion that AT

i Ai is positive definite. Thus (AT
i Ai)

−1 is positive definite by
the positive definiteness of AT

i Ai.
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General case

Lemma

(Used for proving negative definiteness of the derivative of Lyapunov
function) Given an N-agent group, if (G, p∗) is infinitesimally rigid, then there
exists a level set Ωc = {e : V(e) ≤ c} such that (RgG (e))

TRgG (e) is positive
definite for any e ∈ Ωc and (RgG (e))

Td̃ �= 0 for any e ∈ Ωc and e /∈ Ee.

Proof.

First, due to the infinitesimal rigidity of (G, p∗), if a point p is sufficiently close
to Ep, then (G, p) is infinitesimally rigid, which, together with Lemma 12,
implies that (RgG (p))

TRgG (p) is positive definite. Thus there exists a positive
constant ρmax such that if ρmax ≥ ρ > 0, then (RgG (e))

TRgG (e) is positive
definite for any e ∈ Ωρ = {e : V(e) ≤ ρ}.
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Proof.

(Cont.) Second, since φ(p), which is the potential function, is a real analytic
function in some neighborhood of any p̄ ∈ Ep, it follows from Theorem 2 that
there exist a neighborhood Up̄ of p̄ and constants kp̄ > 0 and ρp̄ ∈ [0, 1) such
that

‖∇φ(p)‖ = ‖ − kg(RgG (p))
Td̃‖ ≥ kp̄‖φ(p)− φ(p̄)‖ρp̄

for all p ∈ Up̄. Since φ(p) = 0 only if p ∈ Ep,

‖kg(RgG (p))
Td̃‖ ≥ kp̄‖φ(p)‖ρp̄ > 0 (6)

for all p ∈ Up̄ and p /∈ Ep. Then, for any ē ∈ Ee, we can take a neighborhood
Uē of ē such that

‖(RgG (e))
Td̃‖ > 0

for all e ∈ Uē and e �∈ Ee.
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Proof.
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that
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Proof.

(Cont.) Third, due to the compactness of Ee, there exists a finite open cover
UEe =

⋃ne
k=1 Uēk such that (9) holds for all e ∈ UEe and e �∈ Ee. That is, for any

k ∈ {1, . . . , ne}, if e ∈ Uēk and e �∈ Ee, then (9) holds. Taking UEe and c such
that Ωc ⊆ UEe and c ≤ ρmax ensures that (RgG (e))

TRgG (e) is positive definite
for any e ∈ Ωc and (RgG (e))

Td̃ �= 0 for any e ∈ Ωc and e /∈ Ee.
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General case

Theorem

For N-agents, if (G, p∗) is infinitesimally rigid in the plane, Ep∗ is locally
asymptotically stable under the proposed control law.

Proof.

Take V(e) = (kd/4)
∑

(i,j)∈E(‖eij‖2 − d∗
ij)

2 as a Lyapunov function. The time
derivative of V(e) is then arranged as

V̇(e) = −kdd̃TRgG (e)((RgG (e))
TRgG (e))

−1(RgG (e))
Td̃.

From Lemma 14, there exists a level set Ωc such that (RgG (e))
TRgG (e) is

positive definite for any e ∈ Ωc and (RgG (e))
Td̃ �= 0 for any e ∈ Ωc and e /∈ Ee.

Since V̇(e) is negative definite in Ωc, Ee is locally asymptotically stable,
which in turn implies the local asymptotic stability of Ep∗ .
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General case

Theorem

Given an N-agent group, if (G, p∗) is infinitesimally rigid, then the control law
(5) achieves the asymptotic convergence of p to a point in Ep.

Proof.

From Lemma 14, there exists a level set Ωc such that (RgG (e))
TRgG (e) is

positive definite for any e ∈ Ωc and (RgG (e))
Td̃ �= 0 for any e ∈ Ωc and e /∈ Ee.

Since ((RgG (e))
TRgG (e))

−1 is positive definite in Ωc, there exists a constant
MR such that ‖((RgG (e))

TRgG (e))
−1‖1 ≤ MR, where ‖ · ‖1 denotes the induced

1-norm of matrices. It can be followed by using the result from [Krick et al.
-2009, IJC] that u(t) = −(kd/4kg)((RgG (e))

TRgG (e))
−1ug(t) also belongs to L1

space. Thus p asymptotically converges to a point in Ep.
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Regular tetrahedron shape

Notation

Relative displacements: z1 = p2 − p1,
z2 = p3 − p1, z3 = p4 − p1

A square matrix: Z =
[
z1 z2 z3

]
.

Remark that 1
2 | det Z| is the volume of the

tetrahedron in the figure.
Squared-distance error:

eij(t) = ‖pi(t)− pj(t)‖2 − d2
ij, ∀(i, j) ∈ E ,

where dij = ‖p̄i − p̄j‖, ∀(i, j) ∈ E .
Define e =

[
e12 . . . e34

]T.
Assumption for simplification: dij = d > 0,
∀(i, j) ∈ E
⇒ a regular tetrahedron shape.
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Gradient-descent law

A potential function: φ(p) = 1
4 eTe = 1

4

∑
(i,j)∈E e2

ij.

Objective: limt→∞ φ(p(t)) = 0,
limt→∞ p(t) = a finite point.

Gradient-descent law:

u = −∇φ = = −
[
∂φ

∂p

]T

= −RT
Ge (10)

=

⎡
⎢⎢⎣

e12z1 + e13z2 + e14z3
(−e12 − e23 − e24)z1 + e23z2 + e24z3
e23z1 + (−e13 − e23 − e34)z2 + e34z3
e24z1 + e34z2 + (−e14 − e24 − e34)z3

⎤
⎥⎥⎦ , (11)

⇔ ∀i ∈ V, ui =
∑

j∈Ni
(‖pj − pi‖2 − d2)(pj − pi), where Nj is the set of

neighbors of i.
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Four-agent formations in 3-D

Regular tetrahedron shape

Equilibrium states

ui =
∑
j∈Ni

(‖pj − pi‖2 − d2)(pj − pi) � u1
i + u2

i + u3
i .

Desired equilibrium state: ‖pj − pi‖ = d, ∀(i, j) ∈ E .
Undesired equilibrium state: ∃(i, j) ∈ E , ‖pj − pi‖ �= d, ∀k ∈ V, uk = 0.

i
1
iu

2
iu

3
iu

1 2 3
i i i i

1 2 3
i i iu u u u 0
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Four-agent formations in 3-D

Regular tetrahedron shape

Some sets

Equilibrium sets:

Q =
{

p ∈ R
3|V| : ∇φ = 0

}
,

D =
{

p ∈ R
3|V| : e = 0

}
,

U = Q \ D =
{

p ∈ R
3|V| : ∇φ = 0, e �= 0

}
.

A set by collinear agents:

C =
{

p ∈ R
3|V| : det Z = 0

}
.

⇒ all agents exist on a plane.
Analysis on φ:

dφ
dt

=
∂φ

∂p
ṗ = −‖∇φ‖2 ≤ 0, ∵ ṗ = u = −∇φ.

⇒ limt→∞ ∇φ = 0 ⇒ p(t) approaches Q(= D ∪ U).
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Four-agent formations in 3-D

Regular tetrahedron shape

Attractiveness of the equilibrium sets

Two cases:

lim
t→∞∇φ = 0 and

⎧⎨
⎩

limt→∞ e = 0 ⇒ p(t) approaches D.
or

limt→∞ e �= 0 ⇒ p(t) approaches U .

Note that φ̇ is zero if and only if u = 0.
Since z1, z2 and z3 exist in R

3, if they are linearly independent, then
ṗ = 0 implies that e = 0 from (11).

Lemma

If p ∈ U , then z1, z2 and z3 are linearly dependent.

Lemma 18 means that any formation, with e �= 0, formed by ∀p ∈ U
should exist on a plane due to the linear dependence of z1, z2 and z3,
which means that det Z = 0. Hence, U ⊂ C.
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Four-agent formations in 3-D

Regular tetrahedron shape

Repulsiveness of the undesired equilibrium set
We have

d
dt

det Z = −2σ det Z ⇒ det Z = exp
[
−2

∫ t

0
σ(p(s)) ds

]
det Z0,

where det Z0 is det Z at t = 0, and σ =
∑

(i,j)∈E eij.
If U is attractive, then det Z converges to 0 because U ⊆ C.

det Z = exp
[
−2

∫ t

0
σ(p(s)) ds

]
︸ ︷︷ ︸

>0

det Z0,

It is true that det Z �= 0 for all t ≥ 0 if and only if det Z0 �= 0.
There is a neighborhood of U in which σ < 0 for all p.
exp[·] does not converges to zero, which contradicts to the hypothesis.

Lemma

If p(0) /∈ C, then p(t) is bounded away from U for all t ≥ 0.
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Four-agent formations in 3-D

Regular tetrahedron shape

Main theorem

Theorem

For a given regular tetrahedral formation (G, p̄) and the gradient-descent
law, the realization p(t) converges to a finite point which is congruent to p̄ if
and only if the initial condition p(0) satisfies p(0) /∈ C.

Corollary

The realization p(t) approaches U if
p(0) ∈ C.

Σ: a neighborhood of U .
∂Σ: the boundary of Σ.

3| |3|
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General tetrahedron shape
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Four-agent formations in 3-D

General tetrahedron shape

Assumptions

Quadratic potential function: V(p) = 1
4

∑
(i,j)∈E e2

ij

Gradient-descent law:

ṗ = −
[
∂V
∂p

]T

= −[R(p)]Te(p) = −(E(p)⊗ I3)p. (12)

No mismatched desired distances.

R(p) � 1
2
∂e
∂p

=

⎡
⎢⎢⎢⎢⎢⎢⎣

pT
1 − pT

2 pT
2 − pT

1 0 0
pT

1 − pT
3 0 pT

3 − pT
1 0

pT
1 − pT

4 0 0 pT
4 − pT

1
0 pT

2 − pT
3 pT

3 − pT
2 0

0 pT
2 − pT

4 0 pT
4 − pT

2
0 0 pT

3 − pT
4 pT

4 − pT
3

⎤
⎥⎥⎥⎥⎥⎥⎦
. (13)

Further we assume that R(p̄) has full row rank, which is equivalent that
the framework (K4, p̄) is rigid1 (i.e., m = 3n-6).

1Rigorously say, infinitesimally rigid
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Four-agent formations in 3-D

General tetrahedron shape

Existing Result

p(t) approaches equilibrium set as t → ∞.
The origin of the error dynamics is (locally) exponentially stable.

V̇ = −eRRTe ≤ −4
[
λmin(RRT)

]
V ≤ 0. (14)

The matrix RRT is positive definite near the desired formation shape from
the assumption on p̄. ⇒ λmin(RRT) > 0.
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Four-agent formations in 3-D

General tetrahedron shape

Analysis on Incorrect Equilibria

Consider incorrect equilibrium set given by

Pi =
{

p ∈ R
3|V| : ṗ = −[R(p)]Te(p) = −(E(p)⊗ I3)p = 0, e(p) �= 0

}
.

(15)

Linearization:

∂

∂p

[
−∂V
∂p

]T

= −HV(p), (16)

where HV is the Hessian matrix of V by definition.
Investigate the existence of negative eigenvalue(s) of HV .
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Four-agent formations in 3-D

General tetrahedron shape

Analysis on Incorrect Equilibria

Let p∗ be an element in the incorrect equilibrium set. With an
appropriate transformation, we have

H̄V(p∗) =

⎡
⎣× × 0
× × 0
0 0 E(p∗)

⎤
⎦ . (17)

Show the existence of negative eigenvalu(s) of E(p∗), which can be
done by finding a vector x such that xT [E(p∗)⊗ I3]x < 0.
Actually, we have

xT [E(p∗)⊗ I3]x = −
∑

(i,j)∈E
[eij(p∗)]2 < 0, (18)

for x = p̄.
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Four-agent formations in 3-D

General tetrahedron shape

Main Result I

Theorem

For almost every initial condition in R
3|V|, the trajectory p(t) converges to the

desired equilibrium set Pd, where Pd =
{

p ∈ R
3|V| : e(p) = 0

}
.

Proof.

By taking the derivative of V, we have V̇ = ∂V
∂p ṗ = −

∥∥∥∂V
∂p

∥∥∥2
≤ 0, which

results in that rij and eij are bounded for all i, j ∈ V. From the boundedness
of rij and eij, we can also show that V̈ is bounded so V̇(p(t)) is uniformly
continuous in t on [t0,∞) with an initial time t0. Since V(p(t)) is a
non-increasing lower bounded function, the limit of V(p(t)) exists. Therefore,
V̇(p(t)) converges to 0 as t → ∞ from Barbalat’s lemma, which means that
p(t) approaches either Pd or Pi. The instability of the incorrect equilibrium
set Pi has been previously shown. Therefore, for almost every initial
condition in R

3|V|, p(t) approaches Pd.
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Four-agent formations in 3-D

General tetrahedron shape

Main Result II

Consider Z(p) = [r12 r13 r14] ∈ R
3×3, where rij = pi − pj. Let

Δ(p(t)) = det Z(p(t))

|Δ| is proportional to the volume occupied by the tetrahedron in R
3.

We can show that Δ(p∗) = 0 for any p∗ in the incorrect equilibrium set.
Suppose that (K4, p∗) is a point formation or has a planner shape.

We can show that Δ(p(t)) cannot converge to 0 if p(0) is not in
C = {p ∈ R

3|V| : Δ(p) = 0}.

Suppose that (K4, p∗) is a line formation.
We can show that p(t) is able to converge to p∗ only if (K4, p) is a line
formation.

Corollary

The region of attraction for the desired equilibrium set Pd is R
3|V| \ C.
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Open problems

Gradient laws: Global convergence

Rigid graphs in 2-D

We have solved K4 in 3-D; but can we extend the results in 3-D into
2-D?
Minimally infinitesimal rigid graph with four agents into 2-D?
General minimally rigid graph in 2-D?
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Open problems

Gradient laws: Global convergence

Rigid graphs in 2-D

Solved Not solved (partially) K4: Not solved
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Open problems

Global persistence

Persistence + global rigidity

Flip
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