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Dissipativity and strict dissipativity

The turnpike property and its variants

Known results

New results and proof ideas
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System class
We consider nonlinear discrete time control systems

xu(n+ 1) = f(xu(n),u(n)), xu(0) = x

with xu(n) ∈ X, u(n) ∈ U , X, U normed spaces

Brief notation x+ = f(x, u)

Interpretation:

xu(n) = state of the system at time tn

u(n) = control acting from time tn to tn+1

f = solution operator of a controlled ODE/PDE
or of a discrete time model (or a numerical
approximation of one of these)
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Dissipativity and strict dissipativity



Dissipativity

x+ = f(x, u)

Introduce functions s : X × U → R and λ : X → R+
0

s(x, u) ∈ R supply rate, measuring the (possibly negative)
amount of energy supplied to the system via
the input u in the next time step

λ(x) ≥ 0 storage function, measuring the amount of
energy stored inside the system when the system
is in state x

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 5



Dissipativity
Definition [Willems ’72] The system is called dissipative if for
all x ∈ X, u ∈ U the inequality

λ(x+) ≤ λ(x) + s(x, u)

holds

The system is called strictly dissipative if there are xe ∈ X,
α ∈ K such that for all x ∈ X, u ∈ U the inequality

λ(x+) ≤ λ(x) + s(x, u)− α(‖x− xe‖)

holds

α ∈ K: α : R+
0 → R+

0 , continuous,
strictly increasing, α(0) = 0

r(0, 0)

rα( )

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 6
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Physical interpretation of dissipativity

λ(x+) ≤ λ(x) + s(x, u)
[
− α(‖x− xe‖)

]
physical interpretation of [strict] dissipativity

:

λ(x) = energy stored in the system
s(x, u) = energy supplied to the system

dissipativity: energy can only be dissipated (=lost) but not
be generated inside the system

strict dissipativity: a certain amount of energy, depending
on ‖x− xe‖ must be dissipated

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 7
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History
Dissipativity was defined for continuous time systems in
[Jan C. Willems, Dissipative Dynamical Systems, Part I & II, 1972]

(this is one of the rare occasions in which the original paper can

still be recommended as one of the best readings on the topic)

It was the result of the endeavour to generalise passivity

(passivity = dissipativity with s(x, u) = 〈y, u〉, where y = h(x) is

the output of the system)

Passivity, in turn, is a classical property of electrical circuits
which do not contain active elements

Strict (or strong) dissipativity is mentioned in [Willems ’72] but
is not so often used; strict passivity is more commonly found

Translation to discrete time systems is quite straightforward
[Byrnes/Lin ’94]

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 8
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Lars Grüne, On the relation between dissipativity and the turnpike property, p. 8



History
Dissipativity was defined for continuous time systems in
[Jan C. Willems, Dissipative Dynamical Systems, Part I & II, 1972]

(this is one of the rare occasions in which the original paper can

still be recommended as one of the best readings on the topic)

It was the result of the endeavour to generalise passivity

(passivity = dissipativity with s(x, u) = 〈y, u〉, where y = h(x) is

the output of the system)

Passivity, in turn, is a classical property of electrical circuits
which do not contain active elements

Strict (or strong) dissipativity is mentioned in [Willems ’72] but
is not so often used; strict passivity is more commonly found

Translation to discrete time systems is quite straightforward
[Byrnes/Lin ’94]
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Applications
Dissipativity can be used for designing asymptotically
stabilising feedback controllers

, i.e., for finding a map
u = F (x) such that x+ = f(x, F (x)) has an asymptotically
stable equilibrium x∗:

If we can construct F with s(x, F (x)) < 0 for x 6= x∗, then

λ(x+) ≤ λ(x) + s(x, F (x)) < λ(x), x 6= x∗

implies that λ becomes a Lyapunov function for the system

(in case of strict dissipativity with x∗ = xe, the non-strict
inequality s(x, F (x)) ≤ 0 is sufficient)

Constructing F is particularly easy in case of passivity,
because for s(x, u) = 〈y, u〉 it suffices to define the output
feedback F (y) := −y

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 9
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Lars Grüne, On the relation between dissipativity and the turnpike property, p. 9



Applications
Dissipativity can be used for designing asymptotically
stabilising feedback controllers, i.e., for finding a map
u = F (x) such that x+ = f(x, F (x)) has an asymptotically
stable equilibrium x∗:

If we can construct F with s(x, F (x)) < 0 for x 6= x∗, then

λ(x+) ≤ λ(x) + s(x, F (x)) < λ(x), x 6= x∗

implies that λ becomes a Lyapunov function for the system

(in case of strict dissipativity with x∗ = xe, the non-strict
inequality s(x, F (x)) ≤ 0 is sufficient)

Constructing F is particularly easy in case of passivity,
because for s(x, u) = 〈y, u〉 it suffices to define the output
feedback F (y) := −y
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Applications

Various stability properties can be formulated via dissipativity

:

(asymptotic) stability of the equilibrium xe can be
concluded for all solutions if the system is (strictly)
dissipative, s(x, u) ≤ 0 and the storage function λ is
bounded from below and above by K∞-functions in
‖x− xe‖

(K∞-functions = unbounded K-functions)

input-to-state stability of the equilibrium xe can be
concluded if the system is strictly dissipative, s(x, u) is
continuous and bounded from above by a K-function in
‖u‖ and the storage function λ is bounded from below
and above by K∞-functions in ‖x− xe‖

In both cases, λ is a Lyapunov function

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 10
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Applications

Dissipativity is also a very useful tool for analysing networks of
systems:

under suitable conditions, a network of (strictly) dissipative
systems is (strictly) dissipative, itself

Finally, strict dissipativity plays a major role in the analysis of
so called economic model predictive control schemes (details
later)

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 11
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Available storage
Theorem [Willems ’72, Byrnes/Lin ’94] A system is [strictly]
dissipative with supply rate s [and α ∈ K] if and only if

λ(x) :=

sup
K,u

K−1∑
k=0

−s(xu(k),u(k))
[
+ α(‖xu(k)− xe‖)

]
<∞

for all x = xu(0) ∈ X.

In this case, λ is a storage function

The proof of this theorem essentially relies on the dynamic
programming principle

The particular storage function defined above is called

“available storage”

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 12
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The turnpike property



The turnpike property

The turnpike property describes a behaviour of (approximately)
optimal trajectories for a finite horizon optimal control problem

minimise
u

JN(x,u) =
N−1∑
n=0

`(xu(n),u(n))

Informal description: an (approximately) optimal trajectory
stays near an equilibrium xe most of the time

We illustrate the property by two simple examples

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 14



The turnpike property

The turnpike property describes a behaviour of (approximately)
optimal trajectories for a finite horizon optimal control problem

minimise
u

JN(x,u) =
N−1∑
n=0

`(xu(n),u(n))

Informal description: an (approximately) optimal trajectory
stays near an equilibrium xe most of the time

We illustrate the property by two simple examples
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Example 1: minimum energy control

Example: Keep the state of the system inside a given interval
X minimising the quadratic control effort

`(x, u) = u2

with dynamics
x+ = 2x+ u

and spaces X = [−2, 2], U = [−3, 3]

For this example, the closer the state is to xe = 0, the cheaper
it is to keep the system inside X

 optimal trajectory should stay near xe = 0

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 15
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Lars Grüne, On the relation between dissipativity and the turnpike property, p. 16



Example 1: optimal trajectories

0 5 10 15 20 25
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

n

x
(n

)

Optimal trajectories for N = 5, . . . , 9
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Lars Grüne, On the relation between dissipativity and the turnpike property, p. 16



Example 1: optimal trajectories

0 5 10 15 20 25
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

n

x
(n

)

Optimal trajectories for N = 5, . . . , 21
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Lars Grüne, On the relation between dissipativity and the turnpike property, p. 16



Example 2: a macroeconomic model
The second example is a 1d macroeconomic model

[Brock/Mirman ’72]

Minimise the finite horizon objective with

`(x, u) = − ln(Axα − u), A = 5, α = 0.34

with dynamics x+ = u

on X = U = [0, 10]

Here the optimal trajectories are less obvious

On infinite horizon, it is optimal to stay at the equilibrium

xe ≈ 2.2344 with `(xe, ue) ≈ 1.4673

One may thus expect that finite horizon optimal trajectories
also stay for a long time near that equilibrium

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 17
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Lars Grüne, On the relation between dissipativity and the turnpike property, p. 18



Example 2: optimal trajectories

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

n

x
(n

)

Optimal trajectories for N = 5, . . . , 15

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 18



Example 2: optimal trajectories

0 5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

n

x
(n

)

Optimal trajectories for N = 5, . . . , 17
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The turnpike property: formal definitions
Let xe be an equilibrium, i.e., f(xe, ue) = xe

Define the optimal value function VN(x) := infu JN(x, u)

Turnpike property: There is C > 0 and ρ ∈ K∞ such that for
all x ∈ X and N ∈ N, all optimal trajectories x? with
x?(0) = x and all ε > 0, the number

Qε := #{k ∈ {0, . . . , N − 1} | ‖x?(k)− xe‖ ≤ ε}
satisfies Qε ≥ N − C/ρ(ε)

Near optimal turnpike property: There is C > 0 and ρ ∈ K∞
such that for all x ∈ X, N ∈ N and δ > 0, all trajectories xu
with JN(x,u) ≤ VN(x) + δ and all ε > 0, the number

Qε := #{k ∈ {0, . . . , N − 1} | ‖xu(k)− xe‖ ≤ ε}
satisfies Qε ≥ N − (C + δ)/ρ(ε)

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 19
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History

Apparently first described by [von Neumann 1945]

Name “turnpike property” coined by
[Dorfman/Samuelson/Solow 1957]

Extensively studied in the 1970s in mathematical
economy, cf. survey [McKenzie 1983]

Renewed interest in recent years [Zaslavski ’14,

Trélat/Zuazua ’15, Faulwasser et al. ’15, . . . ]

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 20



History

Apparently first described by [von Neumann 1945]

Name “turnpike property” coined by
[Dorfman/Samuelson/Solow 1957]

Extensively studied in the 1970s in mathematical
economy, cf. survey [McKenzie 1983]

Renewed interest in recent years [Zaslavski ’14,
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Trélat/Zuazua ’15, Faulwasser et al. ’15, . . . ]
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Applications

Economists are interested in the turnpike property because it
gives structural insight about optimal economic equilibria and
the optimal trajectories’ tendency to stay near them

The finite horizon turnpike property at an equilibrium is also
closely related to the convergence of infinite horizon optimal
trajectories towards this equilibrium

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 21
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Applications

The turnpike property can be used for the synthesis of optimal
trajectoried on long time horizons

:

Knowing that the system has the turnpike property allows to
reduce the computation task to computing the equilibrium and
the best way to approach it and to leave it

Ideas of this type can be found, e.g., in [Anderson/Kokotovic ’87]
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Application: Model predictive control
Turnpike properties are also pivotal for analysing economic
Model Predictive Control (MPC) schemes

MPC is a method in which an optimal control problem on an
infinite horizon

minimise J∞(x,u) =
∞∑
n=0

`(xu(n),u(n))

is approximated by the iterative solution of finite horizon
problems

minimise JN(x,u) =
N−1∑
n=0

`(xu(k),u(k))

with fixed N ∈ N

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 23
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Lars Grüne, On the relation between dissipativity and the turnpike property, p. 24



MPC from the trajectory point of view

0

n

x

0 1 2 3 4 5 6

x

black = predictions (open loop optimization)

red = MPC closed loop
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MPC from the trajectory point of view
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Approximation result for MPC

If the finite horizon problems have the turnpike property, then
a rigorous approximation result can be proved

The results exploits that the “red” closed loop trajectory
approximately follows the first part of the ”black” predictions
up to the equilibrium

We illustrate this behaviour by our second example for N = 10

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 25
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Known results
We say that xe is cheaply reachable if there is E > 0 such that
VN(x) ≤ N`(xe, ue) + E for all x ∈ X, N ∈ N

Theorem [Gr. ’13] If the system is strictly dissipative with
supply rate s(x, u) = `(x, u)− `(xe, ue) and bounded storage
function and xe is cheaply reachable, then the near optimal
turnpike property holds

Idea of proof: Strict dissipativity implies that the rotated cost

˜̀(x, u) = `(x, u)− `(xe, ue) + λ(x)− λ(f(x, u))
satisfies ˜̀(x, u) ≥ α(‖x− xe‖). Boundedness of λ implies that

JN (x,u) =
∑N−1

k=0 `(xu(k),u(k)) and J̃N (x,u) =
∑N−1

k=0
˜̀(xu(k),u(k))

differ only by a constant independent of N

⇒ if xu stays away from xe for K ≤ N steps, JN (x,u)−N`(xe, ue)
grows unboundedly as K →∞, contradicting near optimality

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 28
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Lars Grüne, On the relation between dissipativity and the turnpike property, p. 28



Known results
We say that xe is cheaply reachable if there is E > 0 such that
VN(x) ≤ N`(xe, ue) + E for all x ∈ X, N ∈ N

Theorem [Gr. ’13] If the system is strictly dissipative with
supply rate s(x, u) = `(x, u)− `(xe, ue) and bounded storage
function and xe is cheaply reachable, then the near optimal
turnpike property holds

Idea of proof: Strict dissipativity implies that the rotated cost

˜̀(x, u) = `(x, u)− `(xe, ue) + λ(x)− λ(f(x, u))
satisfies ˜̀(x, u) ≥ α(‖x− xe‖). Boundedness of λ implies that

JN (x,u) =
∑N−1

k=0 `(xu(k),u(k)) and J̃N (x,u) =
∑N−1

k=0
˜̀(xu(k),u(k))

differ only by a constant independent of N

⇒ if xu stays away from xe for K ≤ N steps, JN (x,u)−N`(xe, ue)
grows unboundedly as K →∞, contradicting near optimality
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Question

Conclusion: Strict dissipativity can be used as a checkable
condition for the turnpike property

Question: How conservative is this condition, i.e., how much
stronger is strict dissipativity than the turnpike property?

In fact, the theorem just presented relies on another theorem
which does not require cheap reachability

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 29
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Known results
Near equilibrium turnpike property: There is C > 0 and
ρ ∈ K∞ such that for all x ∈ X, N ∈ N and δ > 0, all
trajectories xu with JN(x,u) ≤ N`(xe, ue) + δ and all ε > 0,
the number

Qε := #{k ∈ {0, . . . , N − 1} | ‖xu(k)− xe‖ ≤ ε}
satisfies Qε ≥ N − (C + δ)/ρ(ε)

Theorem [Gr. ’13] If the system is strictly dissipative with
supply rate s(x, u) = `(x, u)− `(xe, ue) and bounded storage
function, then the near equilibrium turnpike property holds

Note: the turnpike properties only differ in the condition on JN :

Turnpike property: JN (x,u) ≤ VN (x)

Near optimal turnpike property: JN (x,u) ≤ VN (x) + δ

Near equilibrium turnpike property: JN (x,u) ≤ N`(xe, ue) + δ

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 30
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New result I
Theorem: The following statements are equivalent

(a) The system is strictly dissipative with supply rate
s(x, u) = `(x, u)− `(xe, ue) and bounded storage
function

(b) The near equilibrium turnpike property holds and xe is
uniformly near optimal, i.e., there is D > 0 with
VN(x) ≥ N`(xe, ue)−D for all x ∈ X, N ∈ N

(c) The near equilibrium turnpike property holds and the
system is dissipative with supply rate
s(x, u) = `(x, u)− `(xe, ue) and bounded storage
function

In other words, the near equilibrium turnpike property exactly
closes the gap between dissipativity and strict dissipativity

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 32
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Lars Grüne, On the relation between dissipativity and the turnpike property, p. 32



Proof idea
We need to prove the equivalences of
(a) strict dissipativity
(b) near equilibrium turnpike and uniform near optim. of xe

(c) near equilibrium turnpike and dissipativity

(b) ⇔ (c) follows by straightforward computation using the
available storage for “⇒”

(a) ⇒ (c) follows from the known result from [Gr. ’13]

(c) ⇒ (a) follows from a rather technical construction of α in
the strict dissipativity condition, using the available storage

Question: Can we get rid of dissipativity in (c)?

Yes, if we use that the near equilibrium turnpike property
induces an averaged form of optimality of xe which under
additional conditions implies dissipativity

[Müller ’14, Müller/Angeli/Allgöwer ’13]

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 33
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(c) ⇒ (a) follows from a rather technical construction of α in
the strict dissipativity condition, using the available storage

Question: Can we get rid of dissipativity in (c)?

Yes, if we use that the near equilibrium turnpike property
induces an averaged form of optimality of xe which under
additional conditions implies dissipativity

[Müller ’14, Müller/Angeli/Allgöwer ’13]
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New result II

Corollary: Assume X is closed and U is compact, ` is
continuous and bounded from below, xe is an equilibrium
around which the system is locally controllable and
ue ∈ argmin{`(xe, u) |xe ∈ X, f(xe, u) = xe}

Then the following statements are equivalent

(a) The system is strictly dissipative with supply rate
s(x, u) = `(x, u)− `(xe, ue) and bounded storage
function

(b) The near equilibrium turnpike property holds

Question: Is local controllability really needed?

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 34
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Example

x+ =
1

2
x and `(x, u) = u2 +

log 2

log |x|

The system has (all three kinds of) the turnpike property at
xe = 0, because all solutions converge to 0

However, one computes that the available storage satisfies

λ(x) := sup
K,u

K−1∑
k=0

−
(
`(x(k), u(k))− `(xe, ue)

)
=∞,

because log |x| → −∞ too slowly as |x| → 0. Hence the
system is not dissipative and thus also not strictly dissipative

Since all other assumptions of the previous corollary are
satisfied, it is the lack of controllability which makes its
statement fail

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 35
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Towards new result III

Recall the first two equivalences in the first theorem:

Theorem: The following statements are equivalent

(a) The system is strictly dissipative with supply rate
s(x, u) = `(x, u)− `(xe, ue) and bounded storage
function

(b) The near equilibrium turnpike property holds and the
equilibrium is uniformly near optimal

Can we replace the near equilibrium turnpike property by the
(more intuitive and “classical”) near optimal turnpike property?

Yes, but again we need additional assumptions

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 36
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New result III
Theorem: Assume ` is bounded and the system is locally
controllable around xe

Then the following statements are equivalent

(a) The system is strictly dissipative with supply rate
s(x, u) = `(x, u)− `(xe, ue) and bounded storage
function and xe is cheaply reachable

(b) The near optimal turnpike property holds and xe is
uniformly near optimal

Idea of proof: cheap reachability and uniform near optimality
of xe, respectively, allow to pass from the near equilibrium to
the near optimal turnpike property and vice versa

Note: the implication “(b) ⇒ strict dissipativity” also holds
without assuming local controllability

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 37
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Analogy to Lyapunov functions
There is an obvious analogy between the equivalences

turnpike property ⇔ existence of a storage function

and

asymptotic stability ⇔ existence of a Lyapunov function

However, there is also a subtle but important difference:

The defining inequality for the storage function must hold
for all trajectories but the turnpike behaviour only holds
for particular trajectories

In contrast, the existence of a Lyapunov function yields
asymptotic stability for all trajectories for which its defining
inequality holds

Lars Grüne, On the relation between dissipativity and the turnpike property, p. 38
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Application: shape of turnpike trajectories
As usually defined, the turnpike property only limits the
number of time instances at which the trajectory is outside an
ε-neighbourhood of xe

Hence, according to the
definition, a turnpike tra-
jectory could look like this

However, in practice in
many examples turnpike
trajectories look like this
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This is because under the stated conditions the turnpike
property implies strict dissipativity, which in turn implies
stability of the optimal trajectories, in the sense that if
x?(k) ≈ xe then x?(k + p) ≈ xe for k, p sufficiently small
relative to N [Gr. 13]

This excludes excursions from xe except at the end of the
optimal trajecory
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Conclusions

We have established equivalence relations between two
classical properties from mathematical systems theory and
optimal control, respectively

Under a local controllability condition, equivalence
between strict dissipativity and the near equilibrium
turnpike property holds

Under appropriate bounds on the value function (i.e.,
cheap reachability and uniform near optimality of xe), this
extends to the near optimal turnpike property

The results precisely describe the gap between strict
dissipativity and turnpike properties

As a consequence, assuming strict dissipativity for
ensuring the turnpike property does not seem overly
conservative
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