presented by

Mircea Lazar

in

FNT2015

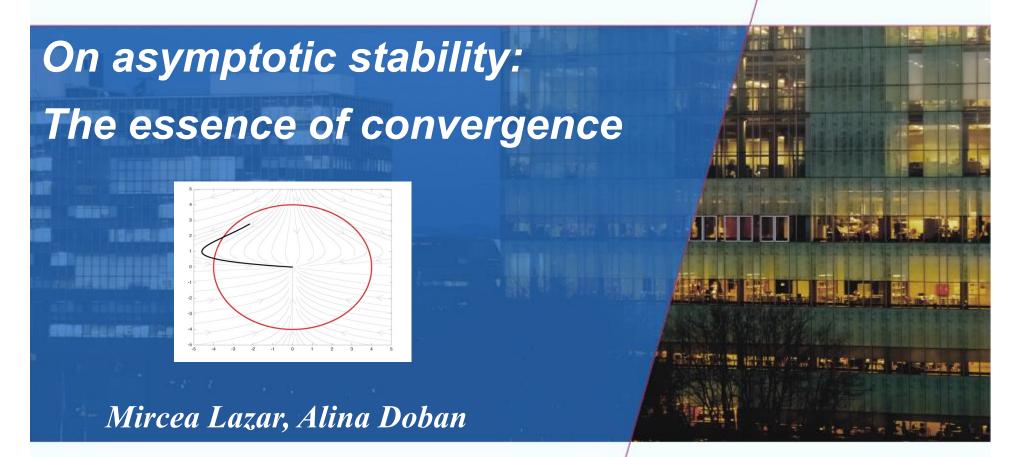
Fukuoka Workshop on Nonlinear Control Theory 2015 December 13, 2015, Fukuoka, Japan

於福

Technically supported by IEEE CSS Technical Committee on Nonlinear Systems and Control

Workshop on Nonlinear Control Theory

- 13 December, 2015, Fukuoka, Japan -



Where innovation starts

Preliminaries: System dynamics

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be an arbitrary map with f(0) = 0. This map can be used to describe a dynamical system:

$$\dot{x}(t) = f(x(t)), \quad \forall t \in \mathbb{R}_+, \quad \forall x(0) \in \mathbb{R}^n$$

 $x(t+1) = f(x(t)), \quad \forall t \in \mathbb{N}, \quad \forall x(0) \in \mathbb{R}^n$

Let $x(t) = \phi(t, x(0))$ denote the solution at time t

If
$$t \in \mathbb{N}$$
, $x(t) = f^t(x(0)) := f \circ \ldots \circ f(x(0))$

Preliminaries: KL-stability

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be an arbitrary map with f(0) = 0. This map can be used to describe a dynamical system:

$$\dot{x}(t) = f(x(t)), \quad \forall t \in \mathbb{R}_+, \quad \forall x(0) \in \mathbb{R}^n$$
$$x(t+1) = f(x(t)), \quad \forall t \in \mathbb{N}, \quad \forall x(0) \in \mathbb{R}^n$$

The dynamical system is \mathcal{KL} -stable in $\mathcal{S} \subseteq \mathbb{R}^n$ with $0 \in \text{int}(\mathcal{S})$ if:

$$\exists \beta \in \mathcal{KL} : \|x(t)\| \le \beta(\|x(0)\|, t), \quad \forall t \in \mathbb{R}_+ (\forall t \in \mathbb{N}), \quad \forall x(0) \in \mathcal{S}$$

If $S = \mathbb{R}^n$ the property is called global \mathcal{KL} -stability

Preliminaries: Global Asymptotic Stability

Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be an arbitrary map with f(0) = 0. This map can be used to describe a dynamical system:

$$\dot{x}(t) = f(x(t)), \quad \forall t \in \mathbb{R}_+, \quad \forall x(0) \in \mathbb{R}^n$$
$$x(t+1) = f(x(t)), \quad \forall t \in \mathbb{N}, \quad \forall x(0) \in \mathbb{R}^n$$

If f is continuous \mathcal{KL} -stability is equivalent with GAS:

Stability:
$$\forall \varepsilon, \exists \delta(\varepsilon) : ||x_0|| \leq \delta(\varepsilon) \Rightarrow ||x(t)|| \leq \varepsilon, \forall t$$

Convergence:
$$\lim_{t\to\infty} ||x(t)|| = 0$$
 for all $x(0) \in \mathcal{S} \subseteq \mathbb{R}^n$

P1.
$$\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$$
: $\alpha_1(||x||) \leq V(x) \leq \alpha_2(||x||), \quad \forall x \in \mathbb{R}^n$



P1.
$$\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$$
: $\alpha_1(||x||) \leq V(x) \leq \alpha_2(||x||), \quad \forall x \in \mathbb{R}^n$

P2. a.
$$\exists \rho \in \mathcal{K} : \dot{V}(x(t)) \leq -\rho(x(t)), \quad \forall x(0) \in \mathcal{S}$$

P1.
$$\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$$
:
 $\alpha_1(\|x\|) \leq V(x) \leq \alpha_2(\|x\|), \quad \forall x \in \mathbb{R}^n$

P2. a.
$$\exists \rho \in \mathcal{K} : \dot{V}(x(t)) \leq -\rho(x(t)), \quad \forall x(0) \in \mathcal{S}$$

b1.
$$\exists \rho \in \mathcal{K}, \rho < \mathrm{id} : V(x(t+1)) \leq \rho(V(x(t))), \forall x(0) \in \mathcal{S}$$

P1.
$$\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$$
:
 $\alpha_1(\|x\|) \leq V(x) \leq \alpha_2(\|x\|), \quad \forall x \in \mathbb{R}^n$

P2. a.
$$\exists \rho \in \mathcal{K} : \dot{V}(x(t)) \leq -\rho(x(t)), \quad \forall x(0) \in \mathcal{S}$$

b1.
$$\exists \rho \in \mathcal{K}, \rho < \text{id} : V(x(t+1)) \leq \rho(V(x(t))), \forall x(0) \in \mathcal{S}$$

b2.
$$\exists \alpha_3 \in \mathcal{K} : V(x(t+1)) \leq V(x(t)) - \alpha_3(||x(t)||), \forall x(0) \in \mathcal{S}$$

A real-valued function $V: \mathbb{R}^n \to \mathbb{R}_+$ is called a **Lyapunov function** if:

P1.
$$\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$$
:
 $\alpha_1(\|x\|) \leq V(x) \leq \alpha_2(\|x\|), \quad \forall x \in \mathbb{R}^n$

P2. a.
$$\exists \rho \in \mathcal{K} : \dot{V}(x(t)) \leq -\rho(x(t)), \quad \forall x(0) \in \mathcal{S}$$

b1.
$$\exists \rho \in \mathcal{K}, \rho < \text{id} : V(x(t+1)) \leq \rho(V(x(t))), \forall x(0) \in \mathcal{S}$$

b2.
$$\exists \alpha_3 \in \mathcal{K} : V(x(t+1)) \leq V(x(t)) - \alpha_3(||x(t)||), \forall x(0) \in \mathcal{S}$$

Properties P2. b1. and P2. b2. are equivalent:

- If P2. b2. holds, P2. b1. holds with $\rho(s) \leq \tilde{\rho}(s) := (\mathrm{id} 0.5\alpha_3 \circ \alpha_2^{-1})(s) < \mathrm{id}(s)$
- If P2. b1. holds, P2. b2. holds with $\tilde{\alpha}_3(s) := (\mathrm{id} \rho) \circ \alpha_1(s) \leq \alpha_3(s) \in \mathcal{K}$

A real-valued function $V: \mathbb{R}^n \to \mathbb{R}_+$ is called a **Lyapunov function** if:

P1.
$$\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$$
:
 $\alpha_1(\|x\|) \leq V(x) \leq \alpha_2(\|x\|), \quad \forall x \in \mathbb{R}^n$

P2. a.
$$\exists \rho \in \mathcal{K} : \dot{V}(x(t)) \leq -\rho(x(t)), \quad \forall x(0) \in \mathcal{S}$$

b1.
$$\exists \rho \in \mathcal{K}, \rho < \text{id} : V(x(t+1)) \leq \rho(V(x(t))), \forall x(0) \in \mathcal{S}$$

b2.
$$\exists \alpha_3 \in \mathcal{K} : V(x(t+1)) \leq V(x(t)) - \alpha_3(||x(t)||), \forall x(0) \in \mathcal{S}$$

Remarks:

- Existence of a Lyapunov function V implies \mathcal{KL} -stability in \mathcal{S} , under the assumption that \mathcal{S} is an invariant set
- \mathcal{KL} -stability in \mathcal{S} implies existence of a Lyapunov function V, but for a specific dynamics f, it is not known which type of V is non-conservative

P1.
$$\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$$
: $\alpha_1(||x||) \leq V(x) \leq \alpha_2(||x||), \quad \forall x \in \mathbb{R}^n$

P1.
$$\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$$
: $\alpha_1(||x||) \leq V(x) \leq \alpha_2(||x||), \quad \forall x \in \mathbb{R}^n$

P2. a.
$$\exists d \in \mathbb{R}_{>0}, \alpha_3 \in \mathcal{K} : V(x(t+d)) \leq V(x(t)) - \alpha_3(||x(t)||), \forall x(0) \in \mathcal{S}$$

P1.
$$\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$$
: $\alpha_1(\|x\|) \leq V(x) \leq \alpha_2(\|x\|), \quad \forall x \in \mathbb{R}^n$

P2. a.
$$\exists d \in \mathbb{R}_{>0}, \alpha_3 \in \mathcal{K} : V(x(t+d)) \leq V(x(t)) - \alpha_3(\|x(t)\|), \quad \forall x(0) \in \mathcal{S}$$

b.
$$\exists d \in \mathbb{N}_{>0}, \alpha_3 \in \mathcal{K} : V(x(t+d)) \leq V(x(t)) - \alpha_3(||x(t)||), \forall x(0) \in \mathcal{S}$$

P1.
$$\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$$
: $\alpha_1(||x||) \leq V(x) \leq \alpha_2(||x||), \quad \forall x \in \mathbb{R}^n$

P2. a.
$$\exists d \in \mathbb{R}_{>0}, \rho \in \mathcal{K}, \rho < \mathrm{id} : V(x(t+d)) \leq \rho(V(x(t))), \forall x(0) \in \mathcal{S}$$

b.
$$\exists d \in \mathbb{N}_{>0}, \rho \in \mathcal{K}, \rho < \mathrm{id} : V(x(t+d)) \leq \rho(V(x(t))), \forall x(0) \in \mathcal{S}$$

A real-valued function $V: \mathbb{R}^n \to \mathbb{R}_+$ is called a **finite time LF** if:

P1.
$$\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$$
:
 $\alpha_1(||x||) \leq V(x) \leq \alpha_2(||x||), \quad \forall x \in \mathbb{R}^n$

P2. a.
$$\exists d \in \mathbb{R}_{>0}, \rho \in \mathcal{K}, \rho < \mathrm{id} : V(x(t+d)) \leq \rho(V(x(t))), \quad \forall x(0) \in \mathcal{S}$$

b. $\exists d \in \mathbb{N}_{>0}, \rho \in \mathcal{K}, \rho < \mathrm{id} : V(x(t+d)) \leq \rho(V(x(t))), \quad \forall x(0) \in \mathcal{S}$

b.
$$\exists d \in \mathbb{N}_{>0}, \rho \in \mathcal{K}, \rho < \mathrm{id} : V(x(t+d)) \leq \rho(V(x(t))), \forall x(0) \in \mathcal{S}$$

Remarks:

- Convergence condition is now unified; distinction comes from the nature of time and solution
- This relaxation was originally proposed by:
 - D. Aeyels and J. Peuteman, A new asymptotic stability criterion for nonlinear time-variant differential equations, IEEE Transactions on Automatic Control, vol. 43, no. 7, pp. 968-971, 1998

A real-valued function $V: \mathbb{R}^n \to \mathbb{R}_+$ is called a **finite time LF** if:

P1.
$$\exists \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$$
:
 $\alpha_1(||x||) \leq V(x) \leq \alpha_2(||x||), \quad \forall x \in \mathbb{R}^n$

P2. a.
$$\exists d \in \mathbb{R}_{>0}, \rho \in \mathcal{K}, \rho < \mathrm{id} : V(x(t+d)) \leq \rho(V(x(t))), \quad \forall x(0) \in \mathcal{S}$$

b.
$$\exists d \in \mathbb{N}_{>0}, \rho \in \mathcal{K}, \rho < \mathrm{id} : V(x(t+d)) \leq \rho(V(x(t))), \quad \forall x(0) \in \mathcal{S}$$

Remarks:

- Property P2. a. implies $\dot{V}(x(t)) < 0$ when $d \to 0$
- Property P2. b. also recovers the standard decrease condition when d=1

Instrumental result: K-infinity bounds on positive functions

Let $W: \mathbb{R}^n \to \mathbb{R}_+$ with W(0) = 0 and $W(x) \to \infty$ as $x \to \infty$ be a positive definite and continuous function on \mathbb{R}^n .

Then there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that

$$\alpha_1(||x||) \le W(x) \le \alpha_2(||x||), \quad \forall x \in \mathbb{R}^n$$

Instrumental result: K-infinity bounds on positive functions

Let $W: \mathbb{R}^n \to \mathbb{R}_+$ with W(0) = 0 and $W(x) \to \infty$ as $x \to \infty$ be a positive definite and continuous function on \mathbb{R}^n .

Then there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that $\alpha_1(\|x\|) \leq W(x) \leq \alpha_2(\|x\|), \quad \forall x \in \mathbb{R}^n$

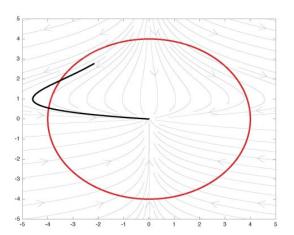
Remarks:

- Originally formulated by W. Hahn, Stability of motion, 1967
- The proof boils down to upper and lower bounding positive definite, continuous and non-decreasing functions by class \mathcal{K}_{∞} functions
- A possible explicit construction of the lower bound is worked out in:

M. Lazar, W.P.M.H. Heemels, A.R. Teel, Further input-to-state stability subtleties for discrete-time systems, IEEE Transactions on Automatic Control, vol. 58, no. 6, pp. 1609-1613, 2013

Let $V: \mathbb{R}^n \to \mathbb{R}_+$ be a FTLF in some set $S \subseteq \mathbb{R}^n$. Assume that S is d-invariant for the dynamics f.

Then the dynamics are \mathcal{KL} -stable in \mathcal{S} with respect to the zero equilibrium.



Let $V: \mathbb{R}^n \to \mathbb{R}_+$ be a FTLF in some set $S \subseteq \mathbb{R}^n$. Assume that S is d-invariant for the dynamics f.

Then the dynamics are \mathcal{KL} -stable in \mathcal{S} with respect to the zero equilibrium.

Proof sketch: For any $t \in \mathbb{R}_+$ there exists $N \in \mathbb{N}$ and $j \in \mathbb{R}_+$, j < d such that t = Nd + j.

$$V(x(t)) = V(x(Nd+j)) = V(x(((N-1)d+j)+d))$$

$$\leq \rho(V(x((N-1)d+j)))$$
...
$$\leq \rho^{N}(V(x(j))) \leq \rho^{N}(\alpha_{2}(||x(j)||))$$

Let $V: \mathbb{R}^n \to \mathbb{R}_+$ be a FTLF in some set $S \subseteq \mathbb{R}^n$. Assume that S is d-invariant for the dynamics f.

Then the dynamics are \mathcal{KL} -stable in \mathcal{S} with respect to the zero equilibrium.

Proof sketch: Solution is given by:

$$x(j) = x(0) + \int_0^j f(x(s))ds, \quad \forall j \in \mathbb{R}_+$$

Define $\max_{j \in [0,d]} ||x(j)|| =: F_d(x(0)).$

Let $V: \mathbb{R}^n \to \mathbb{R}_+$ be a FTLF in some set $S \subseteq \mathbb{R}^n$. Assume that S is d-invariant for the dynamics f.

Then the dynamics are \mathcal{KL} -stable in \mathcal{S} with respect to the zero equilibrium.

Proof sketch: Solution is given by:

$$x(j) = x(0) + \int_0^j f(x(s))ds, \quad \forall j \in \mathbb{R}_+$$

Define $\max_{j \in [0,d]} ||x(j)|| =: F_d(x(0)).$

Hence, by continuity of solutions on the initial condition:

$$\forall j \in \mathbb{R}_{[0,d]} : ||x(j)|| \le ||F_d(x(0))|| \le \omega(||x(0)||), \quad \omega \in \mathcal{K}_{\infty}$$

Let $V: \mathbb{R}^n \to \mathbb{R}_+$ be a FTLF in some set $S \subseteq \mathbb{R}^n$. Assume that S is d-invariant for the dynamics f.

Then the dynamics are \mathcal{KL} -stable in \mathcal{S} with respect to the zero equilibrium.

Proof sketch: For any $t \in \mathbb{R}_+$ there exists $N \in \mathbb{N}$ and $j \in \mathbb{R}_+$, j < d such that t = Nd + j.

$$V(x(t)) \leq \rho^{N}(\alpha_{2}(\|x(j)\|)) \leq \rho^{N}(\hat{\alpha}_{2}(\|x(0)\|))$$

$$\leq \rho^{\left\lfloor \frac{t}{d} \right\rfloor - 1} \circ \rho^{-1} \circ \hat{\alpha}_{2}(\|x(0)\|)$$

$$\leq \rho^{\left\lfloor \frac{t}{d} \right\rfloor} \circ \hat{\rho} \circ \hat{\alpha}_{2}(\|x(0)\|), \quad \hat{\rho} \in \mathcal{K}_{\infty}$$

$$=: \hat{\beta}(\|x(0)\|, t)$$

Let $V: \mathbb{R}^n \to \mathbb{R}_+$ be a FTLF in some set $S \subseteq \mathbb{R}^n$. Assume that S is d-invariant for the dynamics f.

Then the dynamics are \mathcal{KL} -stable in \mathcal{S} with respect to the zero equilibrium.

Proof sketch: For any $t \in \mathbb{R}_+$ there exists $N \in \mathbb{N}$ and $j \in \mathbb{R}_+$, j < d such that t = Nd + j.

$$V(x(t)) \leq \rho^{N}(\alpha_{2}(\|x(j)\|)) \leq \rho^{N}(\hat{\alpha}_{2}(\|x(0)\|))$$

$$\leq \rho^{\left\lfloor \frac{t}{d} \right\rfloor - 1} \circ \rho^{-1} \circ \hat{\alpha}_{2}(\|x(0)\|)$$

$$\leq \rho^{\left\lfloor \frac{t}{d} \right\rfloor} \circ \hat{\rho} \circ \hat{\alpha}_{2}(\|x(0)\|), \quad \hat{\rho} \in \mathcal{K}_{\infty}$$

$$=: \hat{\beta}(\|x(0)\|, t)$$

Finally, this yields by inverting the lower bound on V:

$$||x(t)|| \le \alpha_1^{-1} \circ \hat{\beta}(||x(0)||, t) =: \beta(||x(0)||, t) \in \mathcal{KL}$$

Main results: FTLF converse theorem

Let the dynamics f be \mathcal{KL} -stable with respect to the origin and some proper invariant set $\mathcal{S} \subseteq \mathbb{R}^n$.

Suppose that there exists a $d \in \mathbb{R}_{>0}$ such that $\beta(s,d) < s$ for all s > 0.

Let $V(x) = \eta(||x||)$, where $\eta \in \mathcal{K}_{\infty}$ can be taken arbitrarily.

Then V is a d-FTLF for the dynamics f in the set S.

Main results: FTLF converse theorem

Let the dynamics f be \mathcal{KL} -stable with respect to the origin and some proper invariant set $\mathcal{S} \subseteq \mathbb{R}^n$.

Suppose that there exists a $d \in \mathbb{R}_{>0}$ such that $\beta(s,d) < s$ for all s > 0.

Let $V(x) = \eta(||x||)$, where $\eta \in \mathcal{K}_{\infty}$ can be taken arbitrarily.

Then V is a d-FTLF for the dynamics f in the set S.

Proof sketch:
$$V(x(t+d)) = \eta(\|x(t+d)\|) \le \eta(\beta(\|x(t)\|, d))$$

$$\le \eta(\beta(\eta^{-1}(V(x(t))), d))$$

$$=: \rho(V(x(t)))$$

Main results: FTLF converse theorem

Let the dynamics f be \mathcal{KL} -stable with respect to the origin and some proper invariant set $\mathcal{S} \subseteq \mathbb{R}^n$.

Suppose that there exists a $d \in \mathbb{R}_{>0}$ such that $\beta(s,d) < s$ for all s > 0.

Let $V(x) = \eta(||x||)$, where $\eta \in \mathcal{K}_{\infty}$ can be taken arbitrarily.

Then V is a d-FTLF for the dynamics f in the set S.

Proof sketch:
$$V(x(t+d)) = \eta(\|x(t+d)\|) \le \eta(\beta(\|x(t)\|, d))$$

$$\le \eta(\beta(\eta^{-1}(V(x(t))), d))$$

$$=: \rho(V(x(t)))$$

By the assumption on the \mathcal{KL} -function β it holds that:

$$\rho(s) = \eta(\beta(\eta^{-1}(s), d)) < \eta(\eta^{-1}(s)) = id(s)$$

Define
$$W(x(t)) := \int_t^{t+d} V(x(\tau)) d\tau$$
. Define $W(x(t)) = \sum_{j=t}^{t+d-1} V(x(j))$.

V is a d-finite time Lyapunov function if and only if W is a Lyapunov function (for the dynamics f with respect to the zero equilibrium).

Define
$$W(x(t)) := \int_t^{t+d} V(x(\tau)) d\tau$$
. Define $W(x(t)) = \sum_{j=t}^{t+d-1} V(x(j))$.

V is a d-finite time Lyapunov function if and only if W is a Lyapunov function (for the dynamics f with respect to the zero equilibrium).

Proof sketch: By the Leibniz integral rule we have that:

$$\frac{d}{dt}W(x(t)) = \int_{t}^{t+d} \frac{d}{dt}V(x(\tau))d\tau + V(x(t+d))(t+d) - V(x(t))\dot{t}$$

$$= V(x(t+d)) - V(x(t))$$

$$\leq -\rho(\|x(t)\|)$$

Define
$$W(x(t)) := \int_t^{t+d} V(x(\tau)) d\tau$$
. Define $W(x(t)) = \sum_{j=t}^{t+d-1} V(x(j))$.

V is a d-finite time Lyapunov function if and only if W is a Lyapunov function (for the dynamics f with respect to the zero equilibrium).

Proof sketch: By the Leibniz integral rule we have that:

$$\frac{d}{dt}W(x(t)) = \int_{t}^{t+d} \frac{d}{dt}V(x(\tau))d\tau + V(x(t+d))(t+d) - V(x(t))\dot{t}$$

$$= V(x(t+d)) - V(x(t))$$

$$\leq -\rho(\|x(t)\|)$$

Remark:

• The discrete-time result was proven first in:

R. Geiselhart, R.H. Gielen, M. Lazar, F.R. Wirth, An Alternative Converse Lyapunov Theorem for Discrete-Time Systems, Systems & Control Letters, 70, 49-59, 2014.

Let the dynamics f be \mathcal{KL} -stable with respect to the origin and some proper invariant set $\mathcal{S} \subseteq \mathbb{R}^n$.

Suppose that there exists a $d \in \mathbb{R}_{>0}$ such that $\beta(s,d) < s$ for all s > 0.

Define
$$W(x(t)) := \int_t^{t+d} \eta(\|x(\tau)\|) d\tau$$
. Define $W(x(t)) = \sum_{j=t}^{t+d-1} \eta(\|x(j)\|)$.

Here $\eta \in \mathcal{K}_{\infty}$ can be taken arbitrarily.

Then W is a Lyapunov function for the dynamics f in the set S.

Let the dynamics f be \mathcal{KL} -stable with respect to the origin and some proper invariant set $\mathcal{S} \subseteq \mathbb{R}^n$.

Suppose that there exists a $d \in \mathbb{R}_{>0}$ such that $\beta(s,d) < s$ for all s > 0.

Define
$$W(x(t)) := \int_t^{t+d} \eta(\|x(\tau)\|) d\tau$$
. Define $W(x(t)) = \sum_{j=t}^{t+d-1} \eta(\|x(j)\|)$.

Here $\eta \in \mathcal{K}_{\infty}$ can be taken arbitrarily.

Then W is a Lyapunov function for the dynamics f in the set S.

Remarks:

- Original Massera construction: $W(x(t)) = \int_t^\infty \alpha(\|x(\tau)\|) d\tau$
- Under GES assumption, H. Khalil proposed: $W(x(t)) = \int_t^{t+N} \|x(\tau)\|_2 d\tau$

Instrumental result: Expansion of LFs and FTLFs

Let W be a LF. Define $W_1(x) = W(x + \alpha_1 f(x))$.

Define $S_W(c) := \{x \in \mathbb{R}^n : W(x) \le c\}$ and similarly $S_{W_1}(c)$.

Then W_1 is a LF and $\mathcal{S}_W(c) \subset \mathcal{S}_{W_1}(c)$.

H. Chiang, J.S. Thorp, Stability regions of nonlinear autonomous dynamical systems: a constructive methodology, IEEE TAC, vol. 34, 1229-1241, 1989.

Instrumental result: Expansion of LFs and FTLFs

Let W be a LF. Define $W_1(x) = W(x + \alpha_1 f(x))$.

Define $S_W(c) := \{x \in \mathbb{R}^n : W(x) \le c\}$ and similarly $S_{W_1}(c)$.

Then W_1 is a LF and $\mathcal{S}_W(c) \subset \mathcal{S}_{W_1}(c)$.

Let V be a d-FTLF. Define $V_1(x) = V(x + \alpha_1 f(x))$.

Define $S_V(c) := \{x \in \mathbb{R}^n : V(x) \le c\}$ and similarly $S_{V_1}(c)$.

Then V_1 is a d-FTLF and $\mathcal{S}_V(c) \subset \mathcal{S}_{V_1}(c)$.

H. Chiang, J.S. Thorp, Stability regions of nonlinear autonomous dynamical systems: a constructive methodology, IEEE TAC, vol. 34, 1229-1241, 1989.

Constructive methodology: Main ideas

The developed results can be used to construct LFs and DOAs as follows:

0. Input: candidate set S and function $V(x) = \eta(||x||)$;

The developed results can be used to construct LFs and DOAs as follows:

- 0. Input: candidate set S and function $V(x) = \eta(||x||)$;
- 1. Choose d > 0 and verify $V(x(d)) V(x(0)) \le -\rho(||x||), \rho \in \mathcal{K}$;

The developed results can be used to construct LFs and DOAs as follows:

- 0. Input: candidate set S and function $V(x) = \eta(||x||)$;
- 1. Choose d > 0 and verify $V(x(d)) V(x(0)) \le -\rho(||x||), \rho \in \mathcal{K}$;
- 2. Compute the LF $W(x) = \int_0^d V(x + \tau f(x)) d\tau$;

The developed results can be used to construct LFs and DOAs as follows:

- 0. Input: candidate set S and function $V(x) = \eta(||x||)$;
- 1. Choose d > 0 and verify $V(x(d)) V(x(0)) \le -\rho(||x||), \rho \in \mathcal{K}$;
- 2. Compute the LF $W(x) = \int_0^d V(x + \tau f(x)) d\tau$;
- 3. Find the best DOA of $W: \max_x \{\dot{W}(x) : W(x) \leq C\}$ and increase C while the maximum remains negative;
- 4. Expand W to W_1 and further.

The developed results can be used to construct LFs and DOAs as follows:

- 0. Input: candidate set S and function $V(x) = \eta(||x||)$;
- 1. Choose d > 0 and verify $V(x(d)) V(x(0)) \le -\rho(||x||), \rho \in \mathcal{K}$;
- 2. Compute the LF $W(x) = \int_0^d V(x + \tau f(x)) d\tau$;
- 3. Find the best DOA of $W: \max_x \{\dot{W}(x) : W(x) \leq C\}$ and increase C while the maximum remains negative;
- 4. Expand W to W_1 and further.

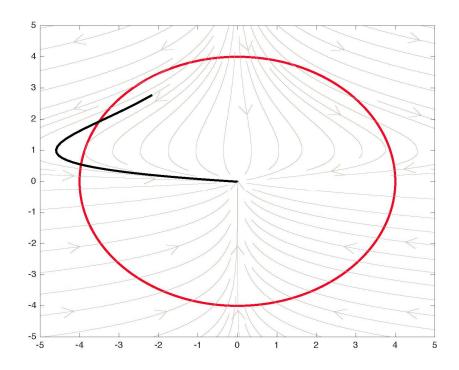
Remarks:

- At step 1. one can work with a linearization of f
- In this case taking $\eta = \text{id yields: } \|e^{d\left[\frac{\partial f(x)}{\partial x}\right]_{x=0}}\| < 1$

$$\dot{x} = f(x) = \begin{pmatrix} -x_1 + x_1 x_2 \\ -x_2 \end{pmatrix}$$

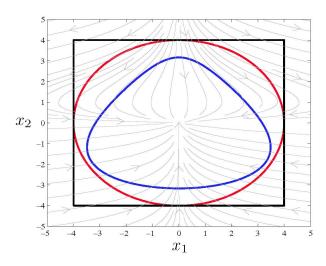
A. Ahmadi, M. Krstic, P.Parrilo, A globally asymptotically stable vector field with no polynomial Lyapunov function, IEEE CDC, 2011, pp. 7579-7580.

$$\dot{x} = f(x) = \begin{pmatrix} -x_1 + x_1 x_2 \\ -x_2 \end{pmatrix}, \quad d = 0.4$$



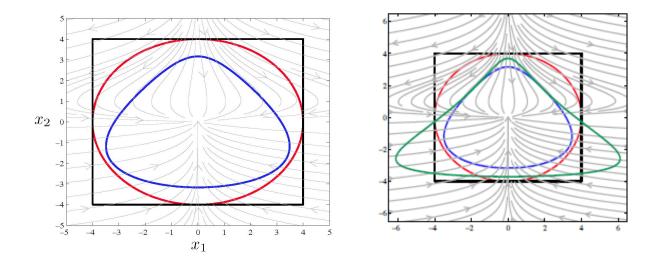
A. Ahmadi, M. Krstic, P.Parrilo, A globally asymptotically stable vector field with no polynomial Lyapunov function, IEEE CDC, 2011, pp. 7579-7580.

$$\dot{x} = f(x) = \begin{pmatrix} -x_1 + x_1 x_2 \\ -x_2 \end{pmatrix}, \quad d = 0.4$$



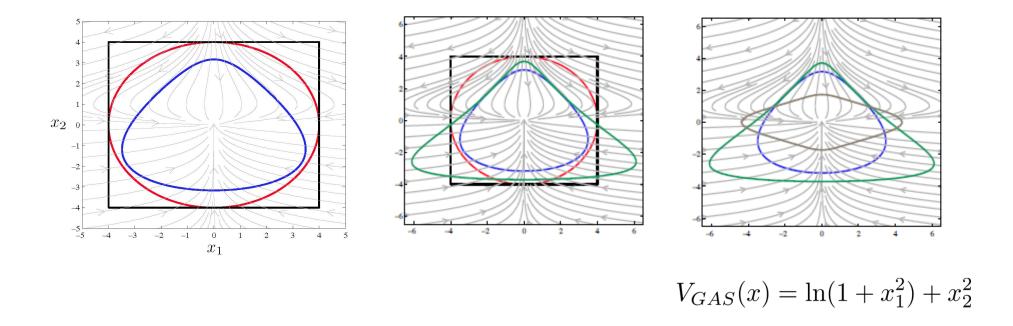
A. Ahmadi, M. Krstic, P.Parrilo, A globally asymptotically stable vector field with no polynomial Lyapunov function, IEEE CDC, 2011, pp. 7579-7580.

$$\dot{x} = f(x) = \begin{pmatrix} -x_1 + x_1 x_2 \\ -x_2 \end{pmatrix}, \quad d = 0.4$$



A. Ahmadi, M. Krstic, P.Parrilo, A globally asymptotically stable vector field with no polynomial Lyapunov function, IEEE CDC, 2011, pp. 7579-7580.

$$\dot{x} = f(x) = \begin{pmatrix} -x_1 + x_1 x_2 \\ -x_2 \end{pmatrix}, \quad d = 0.4$$



A. Ahmadi, M. Krstic, P.Parrilo, A globally asymptotically stable vector field with no polynomial Lyapunov function, IEEE CDC, 2011, pp. 7579-7580.

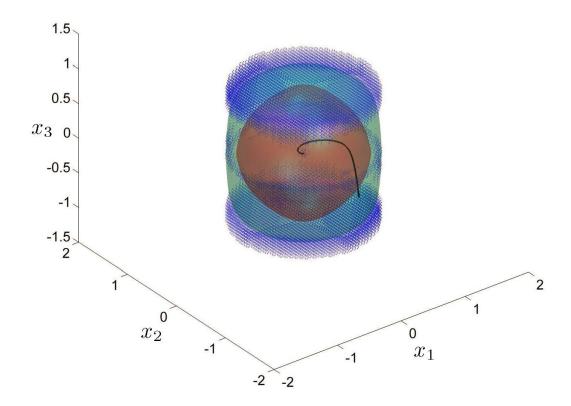
Illustrative example 2: 3D example from literature

$$\dot{x} = f(x) = \begin{pmatrix} x_1(x_1^2 + x_2^2 - 1) - x_2(x_3^2 + 1) \\ x_2(x_1^2 + x_2^2 - 1) + x_1(x_3^2 + 1) \\ 10x_3(x_3^2 - 1) \end{pmatrix}$$

J. Bjornsson, S. Gudmundsson, S. Hafstein, Class library in C++ to compute Lyapunov functions for nonlinear systems, IFAC papers online, 2015.

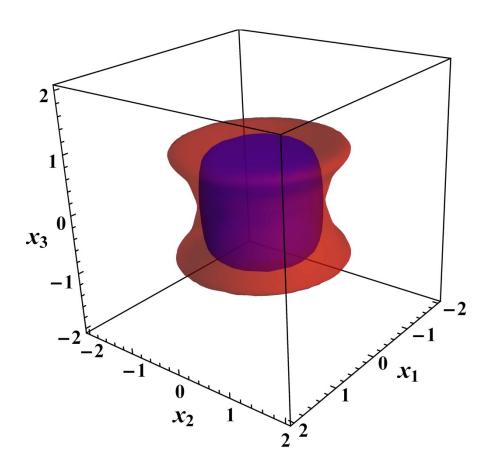
Illustrative example 2: 3D example from literature

$$\dot{x} = f(x) = \begin{pmatrix} x_1(x_1^2 + x_2^2 - 1) - x_2(x_3^2 + 1) \\ x_2(x_1^2 + x_2^2 - 1) + x_1(x_3^2 + 1) \\ 10x_3(x_3^2 - 1) \end{pmatrix}$$



J. Bjornsson, S. Gudmundsson, S. Hafstein, Class library in C++ to compute Lyapunov functions for nonlinear systems, IFAC papers online, 2015.

Illustrative example 2: 3D example from literature



J. Bjornsson, S. Gudmundsson, S. Hafstein, Class library in C++ to compute Lyapunov functions for nonlinear systems, IFAC papers online, 2015.

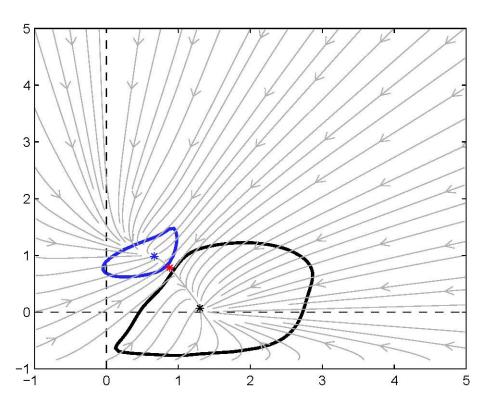
Illustrative example 3: Nonpolynomial 2D – genetic toggle switch

$$\dot{x} = f(x) = \begin{pmatrix} \frac{\alpha_1}{1 + x_2^{\beta}} - x_1\\ \frac{\alpha_2}{1 + x_1^{\gamma}} - x_2 \end{pmatrix}$$

T.S. Gardner, C.R. Cantor, J.J. Collins, Construction of a genetic toggle switch in Escherichia coli, Nature, 2000.

Illustrative example 3: Nonpolynomial 2D – genetic toggle switch

$$\dot{x} = f(x) = \begin{pmatrix} \frac{\alpha_1}{1 + x_2^{\beta}} - x_1\\ \frac{\alpha_2}{1 + x_1^{\gamma}} - x_2 \end{pmatrix}$$



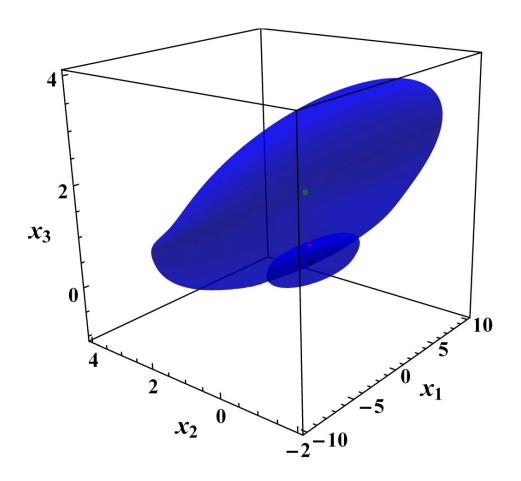
T.S. Gardner, C.R. Cantor, J.J. Collins, Construction of a genetic toggle switch in Escherichia coli, Nature, 2000.

Illustrative example 4: Nonpolynomial 3D – HPA axis

$$\dot{x} = f(x) = \begin{pmatrix} \left(1 + \xi \frac{x_3^{\alpha}}{1 + x_3^{\alpha}} - \psi \frac{x_3^{\gamma}}{x_3^{\gamma} + \tilde{c}_3^{\gamma}}\right) - \tilde{\omega}_1 x_1 \\ \left(1 - \rho \frac{x_3^{\alpha}}{1 + x_3^{\alpha}}\right) - \tilde{\omega}_2 x_2 \\ x_2 - \tilde{\omega}_3 x_3 \end{pmatrix}$$

M. Andersen, F. Vinther, J.T. Ottesen, Mathematical modeling of the hypothalamicpituitaryadrenal gland (hpa) axis, including hippocampal mechanisms, Mathematical Biosciences, 2013.

Illustrative example 4: Nonpolynomial 3D – HPA axis



M. Andersen, F. Vinther, J.T. Ottesen, Mathematical modeling of the hypothalamic pituitary adrenal gland (hpa) axis, including hippocampal mechanisms, Mathematical Biosciences, 2013.

Concluding remarks

Summary of relevant features:

- There is more freedom in choosing the candidate FTLF
- Analytical formula for W improves scalability
- Knowledge of solution x(d) is tackled by linearization
- Method is not limited to polynomial vector fields

Concluding remarks

Summary of relevant features:

- There is more freedom in choosing the candidate FTLF
- Analytical formula for W improves scalability
- Knowledge of solution x(d) is tackled by linearization
- Method is not limited to polynomial vector fields

References with technical details:

- Discrete-time case (due to Roman, during a visit in our group at TU/e):
 - R. Geiselhart, R.H. Gielen, M. Lazar, F.R. Wirth, An Alternative Converse Lyapunov Theorem for Discrete-Time Systems, Systems & Control Letters, 70, 49-59, 2014.
- Continuous-time case results and examples (due to Alina):
 - A.I. Doban, M. Lazar, Computation of Lyapunov functions for nonlinear differential equations via a Massera-type construction, submitted to ECC 2016.

