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Preliminaries: System dynamics

Let f : R™ — R"™ be an arbitrary map with f(0) = 0. This map can be
used to describe a dynamical system:

t(t) = f(x(t)), VteR,, Vz(0)eR"
r(t+1)= f(x(t)), VteN, Vz(0)ecR"

Let z(t) = ¢(t,x(0)) denote the solution at time ¢

Ift e N, z(t) = f1(x(0)) := fo...o f(z(0))



Preliminaries: KL-stability

Let f : R™ — R"™ be an arbitrary map with f(0) = 0. This map can be
used to describe a dynamical system:

t(t) = f(x(t)), VteR,, Vz(0)eR"
r(t+1)= f(x(t)), VteN, Vz(0)ecR"

The dynamical system is KL-stable in & C R™ with 0 € int(S) if:

38 e KL - |lz)|| < B(|=(0)],1), VteRy(VteN), Vz(0)eS

It S = R"™ the property is called global KL-stability



Preliminaries: Global Asymptotic Stability

Let f : R™ — R"™ be an arbitrary map with f(0) = 0. This map can be
used to describe a dynamical system:

t(t) = f(x(t)), VteR,, Vz(0)eR"
r(t+1)= f(x(t)), VteN, Vz(0)ecR"

If f is continuous K L-stability is equivalent with GAS:

Stability: Ve, 30(g) : ||lxo|| < 0(e) = ||z(t)|| < e, Vit

Convergence: lim [|z(¢)|| = 0 for all z(0) € S C R"

t— o0




Preliminaries: Lyapunov functions

A real-valued function V' : R™ — R, is called a Lyapunov function if:

Pl. daj,a0 € K :
ar([lz]) < V(z) < az(f|zf]), VzeR”
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Preliminaries: Lyapunov functions

A real-valued function V' : R™ — R, is called a Lyapunov function if:
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Preliminaries: Lyapunov functions

A real-valued function V' : R™ — R, is called a Lyapunov function if:
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Preliminaries: Lyapunov functions

A real-valued function V' : R™ — R, is called a Lyapunov function if:

Pl. doq, a0 € K
ar([lz]]) < V(z) < as(f|z])), VeeR"

P2. a. Ipe K : V(z(t) < —p(z(t)), Vz(0)eS

bl. dpeK,p<id : V(z(t+1)) <p(V(z(t))), Vz(0)eS

b2. Jaz e £ : V(z(t+1)) < V(x(t)) — as(||x(t)]), Vx(0)eS

Properties P2. bl. and P2. b2. are equivalent:

e If P2. b2. holds, P2. bl. holds with p(s) < j(s) := (id—0.5az0a; *)(s) <
id(s)

e If P2. bl. holds, P2. b2. holds with a3(s) := (id — p) oay(s) < asz(s) € K



Preliminaries: Lyapunov functions

A real-valued function V' : R™ — R, is called a Lyapunov function if:

Pl. doq, a0 € K
ar([lz]]) < V(z) < as(f|z])), VeeR"

P2. a. Ipe K : V(z(t) < —p(z(t)), Vz(0)eS

bl. dpeK,p<id : V(z(t+1)) <p(V(z(t))), Vz(0)eS

b2. Jaz e £ : V(z(t+1)) < V(x(t)) — as(||x(t)]), Vx(0)eS

Remarks:

e Existence of a Lyapunov function V implies KL-stability in S, under the
assumption that § is an invariant set

o CL-stability in & implies existence of a Lyapunov function V', but for a
specific dynamics f, it is not known which type of V' is non-conservative
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Preliminaries: Finite Time Lyapunov functions

A real-valued function V' : R™ — R, is called a finite time LF if:

Pl. daj,a0 € K :
ar([lz]) < V(z) < az(l|zf), VzeR”
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Preliminaries: Finite Time Lyapunov functions

A real-valued function V' : R™ — R, is called a finite time LF if:

P1l. doy, a9 € Koo :
ar(flz])) < V(z) < ao([lz]), VzeR"

P2. a. dd € Ryg,a3 € £ : V(x(t+d)) <V(x(t)) —as(||z(t)]]), Vz(0)eS
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Preliminaries: Finite Time Lyapunov functions

A real-valued function V' : R™ — R, is called a finite time LF if:

Pl. daj,a0 € K :
ar([lz]) < V(z) < aoffz]), VreR"

P2. a. dd e Ryg,a3 € £ : V(z(t+d)) <V(x(t)) —as(||z(t)]]), Vz(0)eS

b. 3d € Nog,a3 € K @ V(z(t+d)) < V(x(t)) — as([z(t)|), Yz(0)eS
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Preliminaries: Finite Time Lyapunov functions

A real-valued function V' : R™ — R, is called a finite time LF if:

Pl. daj, a0 € K :
ar(flz])) < V(z) < aoflz]), VreR"

P2. a. 3d e Rog,peK,p<id : V(z(t+d)) < p(V(z(t))),

Vz(0) € S

b. 3d € Nug,pe K, p<id : V(z(t+d)) < p(V(z(t))),

Vx(0) € S
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Preliminaries: Finite Time Lyapunov functions

A real-valued function V' : R™ — R, is called a finite time LF if:

Pl. daj, a0 € K :
ar(flz])) < V(z) < aoflz]), VreR"

P2. a. ddeR.p,pe,p<id : V(z(t+d)) <p(V(x(t))), Vz(0)eS

b. 3d € Nsg,pe K,p<id : V(x(t+d)) < p(V(z(t))), Vx(0)eS

Remarks:

e Convergence condition is now unified; distinction comes from the nature
of time and solution

e This relaxation was originally proposed by:

D. Aeyels and J. Peuteman, A new asymptotic stability criterion for non-
linear time-variant differential equations, IEEE Transactions on Automatic Con-

trol, vol. 43, no. 7, pp. 968-971, 1998
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Preliminaries: Finite Time Lyapunov functions

A real-valued function V' : R™ — R, is called a finite time LF if:

Pl. daj, a0 € K :
ar(flzf]) < V() < ao([[z]), VeeR"

P2. a. 3d e R.g,pe K,p<id : V(z(t+d)) < p(V(z(t))), Vz(0)eS

b. 3d € Nsg,pe K,p<id : V(x(t+d)) < p(V(z(t))), Vx(0)eS

Remarks:

e Property P2. a. implies V(x(¢)) < 0 when d — 0

e Property P2. b. also recovers the standard decrease condition when d = 1
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Instrumental result: K-infinity bounds on positive functions

Let W : R™ — R, with W(0) =0 and W(zx) — oo as x — oo be a positive
definite and continuous function on R".

Then there exist oy, ay € Ko such that

ar([le])) < W(z) < ag([z])), VzeR"

17



Instrumental result: K-infinity bounds on positive functions

Let W : R™ — R, with W(0) =0 and W(zx) — oo as x — oo be a positive
definite and continuous function on R".

Then there exist oy, ay € Ko such that

ar([lz])) <W(z) < aq([lzf)), VeeR"

Remarks:
e Originally formulated by W. Hahn, Stability of motion, 1967

e The proof boils down to upper and lower bounding positive definite, con-
tinuous and non-decreasing functions by class K, functions

e A possible explicit construction of the lower bound is worked out in:

M. Lazar, W.P.M.H. Heemels, A.R. Teel, Further input-to-state stability
subtleties for discrete-time systems, IEEE Transactions on Automatic Control,
vol. 58, no. 6, pp. 1609-1613, 2013
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Main results: FTLFs imply KL-stability

Let V' : R™ — R, be a FTLF in some set § C R™. Assume that S is
d-invariant for the dynamics f.

Then the dynamics are KCL-stable in S with respect to the zero equilibrium.

19



Main results: FTLFs imply KL-stability

Let V. : R™ — R, be a FTLF in some set S C R"™. Assume that § is
d-invariant for the dynamics f.

Then the dynamics are KCL-stable in S with respect to the zero equilibrium.

Proof sketch: For any t € Ry there exists N € N and 7 € Ry, 7 < d such
that t = Nd + ;.

V(1))

V(z(Nd+j)) = V(@((N = 1)d+j) + d))
< p(V(z((N —1)d +)))

AN

P (V(2(5))) < p™ (ax(l|lz(5)]))
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Main results: FTLFs imply KL-stability

Let V. : R™ — R, be a FTLF in some set S C R"™. Assume that § is
d-invariant for the dynamics f.

Then the dynamics are KCL-stable in S with respect to the zero equilibrium.

Proof sketch: Solution is given by:

2(j) = 2(0) + / " fe(s)ds, VjeR,
)

Define max;¢[g, 4 |lx(5)]| =: Fgq(x(0

21



Main results: FTLFs imply KL-stability

Let V. : R™ — R, be a FTLF in some set S C R"™. Assume that § is
d-invariant for the dynamics f.

Then the dynamics are KCL-stable in S with respect to the zero equilibrium.

Proof sketch: Solution is given by:

2(j) = #(0) + / " fe(s)ds, VjeR,
Define Max; [0, d] |z ()| =: Fa(z(0))

Hence, by continuity of solutions on the initial condition:

Vi €Rpoa ¢ 2Ol < [[Falz(0)]] < w([[z(0)]]), w e Ko
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Main results: FTLFs imply KL-stability

Let V. : R™ — R, be a FTLF in some set S C R"™. Assume that § is
d-invariant for the dynamics f.

Then the dynamics are KCL-stable in S with respect to the zero equilibrium.

Proof sketch: For any t € Ry there exists N € N and 5 € R;, 7 < d such
that t = Nd + j.

V(x(t) < pN (aa(z()|)|< oV (@a(2(0)]]))
< plil=1op~ 1oa2(||x< )

<plilopoas(aO)), peku

= B(|lz(0)]], )
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Main results: FTLFs imply KL-stability

Let V. : R™ — R, be a FTLF in some set S C R"™. Assume that § is
d-invariant for the dynamics f.

Then the dynamics are KCL-stable in S with respect to the zero equilibrium.

Proof sketch: For any t € Ry there exists N € N and 5 € R;, 7 < d such
that t = Nd + j.

V(x(t) < pN (aa(z()|)|< oV (@a(2(0)]]))
< plil=1op~ 1oa2(||x< )

<plilopoas(aO)), peku

=: B(llz(0)],7)
Finally, this yields by inverting the lower bound on V:

|zl < it o (2 (0)1, ) =: B(lx(0)I, ) € KL
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Main results: FTLF converse theorem

Let the dynamics f be KL-stable with respect to the origin and some proper
invariant set S C R".

Suppose that there exists a d € R~ such that|S(s,d) < s|for all s > 0.

Let V(z) = n(||z]|), where n € K, can be taken arbitrarily.

Then V is a d-FTLF for the dynamics f in the set S.
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Main results: FTLF converse theorem

Let the dynamics f be KL-stable with respect to the origin and some proper
invariant set S C R".

Suppose that there exists a d € R~ such that|S(s,d) < s|for all s > 0.

Let V(z) = n(||z]|), where n € K, can be taken arbitrarily.

Then V is a d-FTLF for the dynamics f in the set S.

Proof sketch: V(z(t + d)) = n(|lx(t + d)[]) < n(B([[=(®)], d))
<n(B(n (V(z(1)),d))
= p(V(x(t)))
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Main results: FTLF converse theorem

Let the dynamics f be KL-stable with respect to the origin and some proper
invariant set S C R".

Suppose that there exists a d € R~ such that|S(s,d) < s|for all s > 0.

Let V(z) = n(||z]|), where n € K, can be taken arbitrarily.

Then V is a d-FTLF for the dynamics f in the set S.

Proof sketch: V(z(t + d)) = n(|lx(t + d)[]) < n(B([[=(®)], d))

< (B~ (V(z(t))),d))
= p(V(z(1)))

By the assumption on the KL-function [ it holds that:

p(s) =n(B(n~"(s),d)) <n(n~"(s)) = id(s)
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Main results: Alternative Lyapunov converse theorem

Define W (z(t)) := [TV (x(7))dr. Define W(z(t)) = 254 v ().

¢ j=t

V is a d-finite time Lyapunov function if and only if W is a Lyapunov
function (for the dynamics f with respect to the zero equilibrium).

28



Main results: Alternative Lyapunov converse theorem

Define W (z(t)) := [TV (x(7))dr. Define W(z(t)) = 254 v ().

¢ j=t

V is a d-finite time Lyapunov function if and only if W is a Lyapunov
function (for the dynamics f with respect to the zero equilibrium).

Proof sketch: By the Leibniz integral rule we have that:

t+d . .
GWEO) = [ V@) + Viat+ )i+ d) = V)i

=V(x(t+d)) —V(x(t))
< —p([[z(t)]])

29



Main results: Alternative Lyapunov converse theorem

Define W (z(t)) := [TV (x(7))dr. Define W(z(t)) = 254 v ().

t 7=t

V is a d-finite time Lyapunov function if and only if W is a Lyapunov
function (for the dynamics f with respect to the zero equilibrium).

Proof sketch: By the Leibniz integral rule we have that:

t+d _ .
CW (a(1)) = ] CV ((r)dr + V(a(t + d)) (¢4 d) — V(a(0)

V(z(t +d)) = V(x(t))
—p([lz(®)]])

Remark:

e The discrete-time result was proven first in:

R. Geiselhart, R.H. Gielen, M. Lazar, F.R. Wirth, An Alternative Converse
Lyapunov Theorem for Discrete-Time Systems, Systems & Control Letters, 70,
49-59, 2014.
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Main results: Alternative Lyapunov converse theorem

Let the dynamics f be KL-stable with respect to the origin and some proper
invariant set S C R".

Suppose that there exists a d € R~ such that|S(s,d) < s|for all s > 0.

d — .
Define W (x(t)) := [ n(|l=(7)])dr. Define W(x(t)) = S525 " n(ll=()]).
Here n € K, can be taken arbitrarily.

Then W is a Lyapunov function for the dynamics f in the set S.
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Main results: Alternative Lyapunov converse theorem

Let the dynamics f be KL-stable with respect to the origin and some proper
invariant set S C R".

Suppose that there exists a d € R~ such that|S(s,d) < s|for all s > 0.

Define W (z(t)) := [ n(||z(r)||)dr. Define W (z(t)) = >\24 " n(||lz(5)])-

J=t

Here n € K, can be taken arbitrarily.

Then W is a Lyapunov function for the dynamics f in the set S.

Remarks:

e Original Massera construction: W(z(t)) = [ a(||z(7)|)dr

e Under GES assumption, H. Khalil proposed: W (z(t)) = ftHN |x(7)||2dT

32



Instrumental result: Expansion of LFs and FTLFs

Let W be a LF. Define Wi(z) = W(x + a1 f(z)).

Define Sy (c) :={x € R" : W(x) < ¢} and similarily Sw, (¢).

Then Wi is a LF and Sy (¢) C Sw, (c).

H. Chiang, J.S. Thorp, Stability regions of nonlinear autonomous dynamical
systems: a constructive methodology, IEEE TAC, vol. 34, 1229-1241, 1989.
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Instrumental result: Expansion of LFs and FTLFs

Let W be a LF. Define Wi(z) = W(x + a1 f(z)).

Define Sy (c) :={x € R" : W(x) < ¢} and similarily Sw, (¢).

Then Wi is a LF and Sy (¢) C Sw, (c).

Let V be a d-FTLF. Define Vi(z) = V(x + a1 f(x)).

Define Sy (¢) :={x € R™ : V(x) < ¢} and similarily Sy, (c).

Then V; is a d-FTLF and Sy (¢) C Sy, (c).

H. Chiang, J.S. Thorp, Stability regions of nonlinear autonomous dynamical
systems: a constructive methodology, IEEE TAC, vol. 34, 1229-1241, 1989.
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Constructive methodology: Main ideas

The developed results can be used to construct LFs and DOAs as follows:

0. Input: candidate set S and function V(z) = n(||z||);
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Constructive methodology: Main ideas

The developed results can be used to construct LFs and DOAs as follows:
0. Input: candidate set S and function V (z) = n(||z|);
1. Choose d > 0 and verify V(z(d)) — V(x(0)) < —p(||x|]), p € K;

36



Constructive methodology: Main ideas

The developed results can be used to construct LFs and DOAs as follows:
0. Input: candidate set S and function V' (z) = n(||z||);
1. Choose d > 0 and verify V(z(d)) — V(2(0)) < —p(||z|]), p € K;

2. Compute the LF W (z) = fod V(e 4+ 7f(x))dr;
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Constructive methodology: Main ideas

The developed results can be used to construct LFs and DOAs as follows:
0. Input: candidate set S and function V (z) = n(||z||);
1. Choose d > 0 and verify V(z(d)) — V(x(0)) < —p(||z||), p € K;

2. Compute the LF W (z) = fod V(z +7f(x))dr;

3. Find the best DOA of W: max,{W(z) : W(z) < C} and increase C

while the maximum remains negative;

4. Expand W to W7 and further.
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Constructive methodology: Main ideas

The developed results can be used to construct LFs and DOAs as follows:
0. Input: candidate set S and function V (z) = n(||z||);
1. Choose d > 0 and verify V(z(d)) — V(x(0)) < —p(||z||), p € K;

2. Compute the LF W (z) = fod V(z +7f(x))dr;

3. Find the best DOA of W: max,{W(z) : W(z) < C} and increase C

while the maximum remains negative;

4. Expand W to W7 and further.

Remarks:

e At step 1. one can work with a linearization of f

af ()

(
e In this case taking n = id yields: ||ed[ gl - | <1
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lllustrative example 1: Bilinear dynamics — no polynomial LF

i = f(x) = (—a:l + :L‘lwg)

A. Ahmadi, M. Krstic, P.Parrilo, A globally asymptotically stable vector field
with no polynomial Lyapunov function, IEEE CDC, 2011, pp. 7579-7580.
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lllustrative example 1: Bilinear dynamics — no polynomial LF

7= f(z) = (“”1 T 5“15”2) . d=04

A. Ahmadi, M. Krstic, P.Parrilo, A globally asymptotically stable vector field
with no polynomial Lyapunov function, IEEE CDC, 2011, pp. 7579-7580.
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lllustrative example 1: Bilinear dynamics — no polynomial LF

i = f(z) = (“”1 T 5“15”2) C d=0.4
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A. Ahmadi, M. Krstic, P.Parrilo, A globally asymptotically stable vector field
with no polynomial Lyapunov function, IEEE CDC, 2011, pp. 7579-7580.



lllustrative example 1: Bilinear dynamics — no polynomial LF

i = f(z) = (“”1 T 5615”2) C d=0.4
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A. Ahmadi, M. Krstic, P.Parrilo, A globally asymptotically stable vector field
with no polynomial Lyapunov function, IEEE CDC, 2011, pp. 7579-7580.
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lllustrative example 1: Bilinear dynamics — no polynomial LF

i = f(z) = (“”1 T 5“15”2) C d=0.4

7N}
)

i

-~

N
I
| th IS b b iR =) — © w IS U
T T T T T T T T T

‘ ‘ ‘ . . ; : ‘ ‘
s 4 3 =2 -1 0o 1 2 3 4 s
I

VGAS(CC) = ln(l + CU%) + .CC%

A. Ahmadi, M. Krstic, P.Parrilo, A globally asymptotically stable vector field
with no polynomial Lyapunov function, IEEE CDC, 2011, pp. 7579-7580.
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lllustrative example 2: 3D example from literature

v (25 + 25 — 1) — 22(23 + 1)
i=f(z)=|x2(x?+ 25— 1) +x1(25 +1)
10z3(25 — 1)

J. Bjornsson, S. Gudmundsson, S. Hafstein, Class library in C+-+ to compute
Lyapunov functions for nonlinear systems, IFAC papers online, 2015.
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lllustrative example 2: 3D example from literature

J. Bjornsson, S. Gudmundsson, S. Hafstein, Class library in C+-+ to compute
Lyapunov functions for nonlinear systems, IFAC papers online, 2015.
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lllustrative example 2: 3D example from literature

J. Bjornsson, S. Gudmundsson, S. Hafstein, Class library in C+-+ to compute
Lyapunov functions for nonlinear systems, IFAC papers online, 2015.
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lllustrative example 3: Nonpolynomial 2D — genetic toggle switch

0515 . 331

. 1

i =)= (1
1+ 2

T.S. Gardner, C.R. Cantor, J.J. Collins, Construction of a genetic toggle switch

in Escherichia coli, Nature, 2000.
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lllustrative example 3: Nonpolynomial 2D — genetic toggle switch

|
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T.S. Gardner, C.R. Cantor, J.J. Collins, Construction of a genetic toggle switch

in Escherichia coli, Nature, 2000.
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lllustrative example 4: Nonpolynomial 3D — HPA axis

« :I:PY "
(1+§1i§3§ —ww) — W1
t=flz) = (1—P L )—512332

1+xg
Xro — @3333

M. Andersen, F. Vinther, J.T. Ottesen, Mathematical modeling of the hypotha-
lamicpituitaryadrenal gland (hpa) axis, including hippocampal mechanisms,

Mathematical Biosciences, 2013. >0



lllustrative example 4: Nonpolynomial 3D — HPA axis

M. Andersen, F. Vinther, J.T. Ottesen, Mathematical modeling of the hypotha-
lamicpituitaryadrenal gland (hpa) axis, including hippocampal mechanisms,

Mathematical Biosciences, 2013. >



Concluding remarks

Summary of relevant features:

e There is more freedom in choosing the candidate FTLF
e Analytical formula for W improves scalability

e Knowledge of solution z(d) is tackled by linearization

e Method is not limited to polynomial vector fields
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Concluding remarks

Summary of relevant features:

e There is more freedom in choosing the candidate FTLF
e Analytical formula for W improves scalability

e Knowledge of solution z(d) is tackled by linearization

e Method is not limited to polynomial vector fields

References with technical details:

e Discrete-time case (due to Roman, during a visit in our group at TU/e):

R. Geiselhart, R.H. Gielen, M. Lazar, F.R. Wirth, An Alternative Converse
Lyapunov Theorem for Discrete-Time Systems, Systems & Control Letters, 70,
49-59, 2014.

e Continuous-time case results and examples (due to Alina):

A.L. Doban, M. Lazar, Computation of Lyapunov functions for nonlinear differ-
ential equations via a Massera-type construction, submitted to ECC 2016.
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Thank you for your attention!

¥

~ Special thanks to Hiroshi f




