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Systems Described by RFDEs

2(t) = f(x,u(t)), t >0, a.e.,
x(7) = zo(7), Te[-A,0], x9€C, (1)

x(t) € R"*, n is a positive integer; A is a positive integer, the
maximum involved time-delay; C is the Banach space of
continuous functions mapping [—A, 0] to R", endowed with the
norm of uniform topology, denoted with || - ||co; z+ € C is defined
as z¢(7) =x2(t+71), T€ [-A,0]; fis a map from C x R™ to R",
Lipschitz on bounded sets, zero at zero; m is a positive integer;
u(t) € R™ is a Lebesgue measurable, locally essentially bounded
signal.

For a positive real r, Cr = {¢p € C : [|¢|loo < 7}



Definition 1. Let V : C — RT be a locally Lipschitz functional.
The derivative DTV : Cx R™ — R* of the functional V is defined,
in the Driver’s form (see Driver, 1962, Burton, 1985, P. & Jiang,
2006, Karafyllis, 2006), for ¢ € C, v € R™, as follows

DTV (¢,v) = ”;Zif)lip% (V <<z5h,v) — V((b)) :

where ¢, . € C is given by

bpo(5) = { ¢(s +h), sElA
hyv #(0) + f(¢,v)(h+s), s& (—h,0]



Theorem 2. (Karafyllis, P., Jiang, EJC 2008) Let in the RFDE
(1) u(t) = 0, t > 0. The system described by the RFDE (1)
iIs O—GAS if and only if there exist a locally Lipschitz functional
V : C — Rt and functions a1, ao Of class Ko, a3z oOf class IC,
such that, V¢ € C, the following inequalities hold:

i) a1((|Pllec) < V(@) < az(|[9]leo);

i) DTV ($,0) < —az(|[¢]lo0)



Definition 3. (P.,, SICON 2014) A functional V. : C — R71 is
said to be smoothly-separable if there exist a function Vi €
CH(R™ RT), a locally Lipschitz functional V5 : C — RT, func-
tions B3; of class Ko, @ = 1,2, such that, for any ¢ € C, the
following equality/inequalities hold

V(¢) = V1(¢(0)) + Va(¢), B1(J¢(0)]) < Vi(¢(0)) < B2(|#(0)])



Definition 4. (Artstein, NA 1983, Jankovic, TAC 2001, P., SICON
2014) A smoothly-separable functional V : C — RT is said to be
a CLKF if there exist functions ~v1, vo Of class K~ such that the
following inequalities hold

i) v1(I9(0)]) < V(¢) < v2(llélloc), Vo €C;

i) infu,epm DTV (¢p,u) <0, Vo € C, ¢(0) # 0.



Definition 5. (P.,, SICON 2014) A map k : C — U (continuous
or not) is said to be a steepest descent feedback, induced by a
CLKF V, if the following condition holds: there exist m € {0, 1},
positive reals n and p, a function p € C1(R*; RT), of class Ko,
such that, V¢ € C,

mDTV (¢, k() +nmax{0, DT po Vi(¢, k() + ppo V1(4(0))} <0

Recall: V(¢) = V1(#(0)) + Va(¢)



() = a(t — &) + o (1)]u(t)

V(¢) = V1(¢(0)) + Va(e), ¢ €C ;
Vi(x) = 562, x € R, Vo(op) = /—A 2q§2(7')d7', o €C
k(¢) = —2sgn(4(0))

V is CLKF, k is a (discontinuous) steepest descent feedback.

Indeed, for m =1, n =0.1, p = I, p = 1, we have, for any
¢ € C:

inf DTV (¢,u) < DTV(¢,k(8)) < —6°(0) — ¢*(=2),

mDTV (¢, k(¢)) +nmax{0, DTpo V1(¢,k(¢)) + uV1(4(0))} <
—$%(0) — °(—A) 4+ 0.1 max{0, —2¢>(0) + ¢°(—=A)} < 0
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Assumption 6. T here exists a positive real g such that the initial
condition xqg € Wl’oo, and ess SUPge[—AQ] ‘dxdoe(g)| < q. There exist
a CLKF V and an induced steepest descent feedback k (contin-

uous or not). The map ¢ — DTVs(d,u) is Lipschitz on bounded
subsets of C x R™.
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Definition 7. (Clarke et al., TAC 1997, P., SICON 2014) A par-
tition m = {t;, 1 = 0,1,...} of [0,+00) is a countable, strictly
increasing sequence t;, with to = 0, such that t; — —+oco as
i — +oo. The diameter of w, denoted diam(w), is defined as
sup;>oti+1 — t;- The dwell-time of w, denoted dwell(m), is de-
fined as inf;>ot;4+1 —t;. For any positive reals a € (0,1], b > 0,
Tap 1S @ny partition = with ab < dwell(n) < diam(w) < b.
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Definition 8. (Clarke et al., TAC 1997, P., SICON 2014) We
say that a feedback F : C — R™ (continuous or not) stabilizes
the system described by the RFDE in the sample-and-hold sense
if, for every positive reals r, R, O < r < R, a € (0,1], there
exist a positive real 6 depending upon r, R, q and A, a posi-
tive real 1', depending upon r, R, q, A and a, and a positive
real E, depending upon R and /A, such that, for any partition
a5 = 1ti, ©=0,1,...}, for any initial state zq € Cg, the solution
corresponding to xg and to the sampled-data feedback control
law u(t) = F(:ctk), t, <t< (k1) k=0,1,..., exists Vt > 0 and,
furthermore, satisfies:

x+ € Cp, YVt > 0; xy € Cpr, Vt>T
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Theorem 9. (P., SICON 2014) Any steepest descent feedback
k (continuous or not) stabilizes the system described by (1) in
the sample-and-hold sense.
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An Example from Sliding Mode Control

delay-free case studied in Khalil's book.

r1(t) = z2(t),
ro(t) = H(xy) + G(xt)u(t),
x(17) = x29(7), Te€[-A,0],

where: z(t) = [z1(t) z2(t)]L € R?; A is an arbitrary positive
real; H:C —- R, G:C — RT are uncertain maps, Lipschitz on
bounded sets; H(0) = 0; xg € Wloo ess SUPge[—A,0] ‘dwg(m‘ < q;

0
g is an arbitrary positive constant; u(¢) € R is the control input.
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We introduce the following standard assumption.

1) there exists a positive real gg such that, for all ¢ € C, the
inequality holds G(¢) > go;

2) there exist a positive real ay, a locally bounded function
p : C — RT such that, for all ¢ € C, the inequality holds

[a1¢2(0) + H(¢)| < p(¢)G (&)

16



Let us consider the Lyapunov-Krasovskii functional V : C — Rt
defined, for ¢ = [ &1 ¢o L €C, as

(

Syv92(0), $1(0)] < 1,
V(¢) = (a161(0) + ¢2(0))?% + ¢

v ([6100) = 3), [#1(0)] > 1,
with ~ a suitable positive parameter which will be

chosen later. Such functional is a CLKF. Indeed,

for any ¢ = [qbl 0l ]T € C, u € R, by the equality

$1(0)¢2(0) = ¢1(0)(a1¢1(0) 4 $2(0)) — a1¢7(0), we have

DV (9,1) < 26(6) (0161(0) +0(0)) (2D LI )

+41a161(0) 4 ¢2(0)| — yar min {|¢1(0)|, $7(0) }
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Taking into account of the possibility of choosing (a sliding

mode control feedback) u = —(p(®) + ko) - sgn(a161(0) + ¢>(0)),
with kg a positive real, we have, for all ¢ € C,

inf DTV (¢,u) < DTV ($, —(p(¢) + ko) - sgn(a141(0) + $2(0))) <

— (2g0ko — ) la161(0) 4 ¢2(0)| — yaz min {|$1(0)], ¢7(0) } .

Therefore, by choosing any ~v € (0,2gp0kg), it follows that
inf,er DTV (o,u) <0, Vo € C, $(0) # 0. Let the map k:C — R
be defined, for ¢ € C, as

k(¢) = — (p(¢) + ko) sgn(a141(0) + ¢2(0))
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The map k is a steepest descent feedback. Indeed, let

m=p=1,s>0, n=min{2g0ko — 7, a1}, p(s) = logn(1 + s),
s > 0. We have, for any ¢ € C, taking into account of the
increasing property of the function p, and that V(¢) = V7 (¢(0)),

DTV (¢,k(¢)) +nmax{0, DTpoVi(¢,k(¢)) + upo V1(4(0))} <
—min {2gokog — v, a1} (|a1(b1(0) + ¢2(0)| + vy min {| #1(0)|, qﬁ%(O)})
+ min {2g0ko — v, a1}logn (1 + (a101(0) + ¢2(0))2
+ymin{|¢1(0)], ¢3(0)})
By the inequality logn(1 + s7 +s2) —s1 —s2 <0, V¥ 51,80 € RT, it
follows that, Vo € C,

DTV (¢, k(¢)) +nmax{0, DFpoVi(¢,k(¢)) + upo Vi(6(0))} <0,

that is, k is a steepest descent feedback.

19



We conclude that the steepest descent feedback k stabilizes the
system in the sample-and-hold sense. The piece-wise constant
control law is defined as follows, for t > O,

u(®) = — (p (w1,) + ko) sgnlares (tp) + z2(tr)),
tk§t<t(k+1)7 k‘:O,l,, tO:O
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Simulations have been performed with H, G defined, for

b = [ 71| e as H) = hor(-B)oa(~4), G(6) = ba.

where b;, 1 = 1,2 are uncertain parameters, by € [—1, 1],
b> € [1,2], A is a known positive constant. We can choose,
in this case, a3 = 1, p(¢) = |[p1(—=AD)Pa2(—A)| + [¢2(0)],
¢ € C. In the performed simulations, kg = 0.1, A = 1.4,

xo(7) = [ _11 ] 7€ —[A,0], a=1 (uniform sampling), b1 = —1,

b = 1 are chosen. In simulations, a disturbance d(t) = d,

kS <t<(k+1)5, k=0,1,..., adding to the control law, is also
considered. Such disturbance is generated at each sampling
time as an element of the interval [-0.15,0.05] with uniform
probability density function.
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Figure 1: Variables x1 and x5, 6 = 0.3
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Figure 2: Input Signal (plus disturbance), 6 = 0.3
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Local Results

Definition 10. (P., SICON 2014) Let Q be a positive real. We
say that a feedback I': Cg — R™ (continuous or not) stabilizes
the system described by the RFDE in the sample-and-hold sense,
in Cg, If, for every positive realsr, R, 0 <r < R<Q, a € (0,1],
there exist a positive real 6 depending upon r, R, q and A, a
positive real T', depending upon r, R, q, A and a, and a positive
real £, depending upon R and /A, such that, for any partition
a5 = 1ti, ©=0,1,...}, for any initial state zq € Cg, the solution
corresponding to xg and to the sampled-data feedback control
law

u(t)ZF(:Utk), tk§t<t(k+1), k=20,1,...,
exists YVt > 0 and, furthermore, satisfies:
xt € Cgp, YVt > 0; xt € Cpr, VE2>T
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Theorem 11. (P., SICON 2014) Let there exist a positive real
S, a functional V : C¢ — RT, a map k : Cg — R™ (continuous or
not) such that:

i) Visa CLKF inCg;

ii) k is a steepest descent feedback induced by V, in Cg.

Then, the steepest descent feedback k stabilizes the system de-
scribed by the RFDE in the sample-and-hold sense, in CQ, where
Q) is a positive real satisfying the inequality a1(S) > a>(Q), with

a1(s) = ne #2poB1(s), az(s) =72(s) +npopBa(s), s>0.
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Corollary 12. Let there exist a diffeomorphism vV : Q. — €2,
with 2.,2, € R™ open, bounded neighborhoods of the origin,
functions Yopr Vapr of class K~, a Hurwitz matrix FF € R"*" a
positive real S, a Lipschitz feedback k : C¢ — R'™, zero at zero,
such that: Bg C S2g;

Yy (|2]) < W ()] <7y (l2)), VI € Qu;

oV (x)
ox

f(@,k(¢)) = FW(4(0)), V¢ € Cg
r=¢(0)

T hen, there exists a positive real () such that the feedback k -
Cg — U stabilizes in the sample-and-hold sense, in CQ, the system
described by the RFDE.
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Human Glucose-Insulin System. Delays occur because of the
reaction time of the pancreas to plasma-glucose variations.

27



De Gaetano, Palumbo, Panunzi, DCDS-B 2007

dG(t
di ) _Ka;ng(t)I(t) + ig
d;(tt) — K (t) + Z@T;axh((}(t—fg)) +o(t),
G(T) — G07 I(T) — IOa T € [_7_97 0]7 (2)

e G(t) [mM] plasma glucose concentration

e /(t) [pM] plasma insulin concentration

28



The nonlinear map h(-) models the endogenous pancreatic
insulin delivery rate as

(&)
h(G) = s, (3)
1+ (&)
where ~ is the progressivity with which the pancreas reacts to
circulating glucose concentrations and G* is the glycemia at
which the insulin release is half of its maximal rate. The control
input, v(t), is the exogenous intra-venous insulin delivery rate.

29



Sample-and-hold stabilizer

Let Gref be a positive constant, safe level of glycemia. Let
I,cy and v,..r be the positive reals such that (G,cf, Iyef) is an
equilibrium point for the glucose-insulin system described by the
RFDE, forced by the constant input v(t) = Vref- The REDE
G(t) — Gref ]
I(t) — ref
and with the new input u(t) = v(t) — v,ef. Let W : R? — R? be

can be rewritten with the new variables z(t) = [

defined, for x = [ Y1 | ¢ R?, as

L2

_ B 1

\UCU) - [ _chgz'(xl + Gref)(xQ + Iref) + KxgiGrefIref ] . (4)
Let €2,, €2, be open neighborhoods of the origin such that the
map W : Q, — Q. defined, for x € Q, as V(z) = W(x), is a
diffeomorphism.
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Let us consider the state feedback k : C — R defined, for

b = [zll € C, as (Palumbo, P., Panunzi, De Gaetano,
2

DCDS-B 2009)

P(61(0)+Gyef.02(0)+ e .61 (~79)+Gref ) ~RW(6(0))
_Uref—l_ Kxgi(¢1(o)+Gref) )
k(o) = < ¢1(0) # _GT€f7
\ —Uref; $1(0) = _GT€f7
(5)
where P : R3 — R is defined, for y = [ Y1 Yo Y3 ]T € R3 as

— Tgh
7’<y1,y2,y3) = —Kygiy2 | —Kggiy1y2 + Ve

T.
_K:cgiyl <_K:m'y2 + zC‘J/?a:ch(yg)))

(6)
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Since the exogenous intra-venous insulin delivery rate cannot
be negative, we have in this case that the input v(¢) must
belong to the following set V = [0, vmaz], Where vmas is a
suitable positive real. It follows that u(¢) (and thus k(¢))

must belong to the set U = [~v,cf, Vmaz — vpef]. Since

P(Gr]gg’if&e?i’fref) = v.er > 0, taking into account that W(0) =0,

it follows that there exists a positive real S such that, for all
¢ €Cg, k(¢) €U.
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Digital Implementation of Glucose Controller

Theorem 13. (Palumbo, P., Panunzi, De Gaetano, III DelSys
Workshop, Grenoble, 2014)

T here exists a positive real () such that the state feedback k
Sstabilizes in the sample-and-hold sense, in CQ, the glucose insulin-
system.

The piece-wise constant control law v(t) for the glucose-insulin
system is defined as follows, for t > 0O,

(;(tk) _'(;ref _—
‘_Zgigi(;(tk)l(tk) 4“1%;

P(G (), I(tg), Gty — 7)) — RW (

l(igi(;(tk)

v(t) =

Y
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A case of severe hyperglycemia (establishment of a state of
frank Type 2 Diabetes Mellitus) is considered in Palumbo, P.,
Panunzi, De Gaetano, DCDS 2009. The delay 74 is equal to

24 man.
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Figure 3: Evolution of the plasma glycemia G(t), with sampling
period é =5 min
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Figure 4: Evolution of the insulin I(t), with sampling period

O =5 min
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Figure 5: Control Signal, with sampling period 6 =5 min
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Linearizing Virtual Stabilizers

Definition 14. (P.,, CDC 2015) We say that a locally bounded
state feedback G : C — R™ (continuous or not) is a linearizing
virtual stabilizer for the nonlinear RFDE system, if there exist
a non-negative integer w, non-negative reals Aj, 7 =0,1,...,w,
with 0 = Ag < A7 < --- < Ay = A, matrices A; € R"™",
7 = 0,1,...,w, such that, for any ¢ € C, the equality holds,
for the map f describing the dynamics of the nonlinear RFDE
system,

f(9:G(9)) = D Ajp(=Ay),

J=0
and the linear time-delay system described by the equation

()= > At — A, &g € C,
j=0
is 0-GAS.
38



i(t) = —w(t) + 2u(t — A) + [o(8)u(t)

In this case, the map f is defined, for ¢ € C, u € R, as
f(d,u) = —(0) + 2¢0(—A) 4+ |#(0)|u. The discontinuous map
G defined, for ¢ € C, as G(¢) = —2sgn(¢(0)), is a linearizing
virtual stabilizer. It seems hard (maybe impossible) to find out
a continuous map such that the same goal of linearization and
(virtual) stabilization is achieved.

Corresponding linear system:

E(t) = —3&(t) +2£(t — A) (8)
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Lemma 15. (Kharitonov, Zhabko, AUT 2003) If k : C — R™ is
a linearizing virtual stabilizer, then there exists a function U
[—A, A] — R"™ with the following properties:

i) U(0) is a symmetric positive definite matrix in R™*",;

ii) U is continuous in [—-A, A] and continuously differentiable in
[—A,0) U (0, A], with

im dU(T): im dU (1)

— In; (9)

40



iii) for the functional Wy; : C — R defined, for ¢ € C, as

Wir(8) = 67 (@U(0)6(0) +267(0) . [ U

j=1

"‘f: ) /O ,¢T(91)A? (/_OA U(01+ A —

J

+3 [0, A A+ 00T @00

j=1

—0 — A)A;$(0)dl

0> — Aj)Aj¢(92)d92> df1

the following inequalities hold, for suitable positive reals a;,

i=1,2,

a1]$(0) % < Wy () < azl9llZ,

D W6 k(8) <~ |[ 67(0) ¢7(-A1) ...

o7 (~ D) |

T‘Q



Theorem 16. (P., CDC 2015) Any linearizing virtual stabilizer
k:C— R™ js a stabilizer in the sample-and-hold sense.
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The linear case

p
(t) = > Ajz(t —Aj) + Bu(t), rg € C, (10)
j=1
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Corollary 17. (P., CDC 2015) Let there exist (p + 1) matrices
Kj c RmMx" 5=0,1,...,p, such that the closed-loop system with

T
u(t) =K [ 27(t) o"(t—A1) - 2Tt -0y |
K=|Ko Ki ... Kp]|,
is 0-GAS. Then, the feedback k : C — R™, defined, for ¢ € C, as
T
k(¢) = K| ¢T(0) ¢T(-n1) -+ ¢T(=Dyp) |, is a stabilizer in
the sample-and-hold sense for the linear system.

43



Work in Progress and Future Developments

e Sampled-data observer-based (continuous time) controllers
for systems described by RFDEs.

e Sample-and-hold stabilizers for nonlinear systems with time-
varying time-delays.

e Stabilization in the sample-and-hold sense of systems de-
scribed by RFDEs with discontinuous right-hand side.

e Robustness with respect to actuation disturbances and ob-
servation errors.
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