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Stabilization in the Sample-and-Hold Sense

F.H. Clarke, Y.S. Ledyaev, E.D. Sontag, A.I. Subbotin,
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IEEE Transactions on Automatic Control, Vol. 42, pp.

1394-1407, 1997.

F.H. Clarke, “Discontinuous Feedback and Nonlinear Systems”,

Plenary Lecture at IFAC Conference on Nonlinear Control

Systems (NOLCOS), Bologna, Italy, 2010, IFAC-PapersOnline.

3



Systems Described by RFDEs

ẋ(t) = f(xt, u(t)), t ≥ 0, a.e.,

x(τ) = x0(τ), τ ∈ [−∆,0], x0 ∈ C, (1)

x(t) ∈ Rn, n is a positive integer; ∆ is a positive integer, the

maximum involved time-delay; C is the Banach space of

continuous functions mapping [−∆,0] to Rn, endowed with the

norm of uniform topology, denoted with ‖ · ‖∞; xt ∈ C is defined

as xt(τ) = x(t + τ), τ ∈ [−∆,0]; f is a map from C × Rm to Rn,

Lipschitz on bounded sets, zero at zero; m is a positive integer;

u(t) ∈ Rm is a Lebesgue measurable, locally essentially bounded

signal.

For a positive real r, Cr = {φ ∈ C : ‖φ‖∞ ≤ r}
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Definition 1. Let V : C → R+ be a locally Lipschitz functional.

The derivative D+V : C×Rm → R? of the functional V is defined,

in the Driver’s form (see Driver, 1962, Burton, 1985, P. & Jiang,

2006, Karafyllis, 2006), for φ ∈ C, v ∈ Rm, as follows

D+V (φ, v) = lim sup
h→0+

1

h

(
V
(
φh,v

)
− V (φ)

)
,

where φh,v ∈ C is given by

φh,v(s) =

{
φ(s + h), s ∈ [−∆,−h],

φ(0) + f(φ, v)(h + s), s ∈ (−h,0]
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Theorem 2. (Karafyllis, P., Jiang, EJC 2008) Let in the RFDE

(1) u(t) = 0, t ≥ 0. The system described by the RFDE (1)

is 0−GAS if and only if there exist a locally Lipschitz functional

V : C → R+ and functions α1, α2 of class K∞, α3 of class K,

such that, ∀φ ∈ C, the following inequalities hold:

i) α1(‖φ‖∞) ≤ V (φ) ≤ α2(‖φ‖∞);

ii) D+V (φ,0) ≤ −a3(‖φ‖∞)
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Definition 3. (P., SICON 2014) A functional V : C → R+ is

said to be smoothly-separable if there exist a function V1 ∈
C1
L(R

n;R+), a locally Lipschitz functional V2 : C → R+, func-

tions βi of class K∞, i = 1,2, such that, for any φ ∈ C, the

following equality/inequalities hold

V (φ) = V1(φ(0)) + V2(φ), β1(|φ(0)|) ≤ V1(φ(0)) ≤ β2(|φ(0)|)
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Definition 4. (Artstein, NA 1983, Jankovic, TAC 2001, P., SICON

2014) A smoothly-separable functional V : C → R+ is said to be

a CLKF if there exist functions γ1, γ2 of class K∞ such that the

following inequalities hold

i) γ1(|φ(0)|) ≤ V (φ) ≤ γ2(‖φ‖∞), ∀φ ∈ C;

ii) infu∈Rm D+V (φ, u) < 0, ∀φ ∈ C, φ(0) 6= 0.
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Definition 5. (P., SICON 2014) A map k : C → U (continuous

or not) is said to be a steepest descent feedback, induced by a

CLKF V , if the following condition holds: there exist m ∈ {0,1},
positive reals η and µ, a function p ∈ C1

L(R
+;R+), of class K∞,

such that, ∀φ ∈ C,

mD+V (φ, k(φ)) + η max{0, D+p ◦ V1(φ, k(φ)) + µp ◦ V1(φ(0))} ≤ 0

Recall: V (φ) = V1(φ(0)) + V2(φ)
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ẋ(t) = x(t − ∆) + |x(t)|u(t)

V (φ) = V1(φ(0)) + V2(φ), φ ∈ C

V1(x) = x2, x ∈ R, V2(φ) =
∫ 0

−∆
2φ2(τ)dτ, φ ∈ C

k(φ) = −2sgn(φ(0))

V is CLKF, k is a (discontinuous) steepest descent feedback.

Indeed, for m = 1, η = 0.1, p = Id, µ = 1, we have, for any

φ ∈ C:

inf
u∈R

D+V (φ, u) ≤ D+V (φ, k(φ)) ≤ −φ2(0) − φ2(−∆),

mD+V (φ, k(φ)) + η max{0, D+p ◦ V1(φ, k(φ)) + µV1(φ(0))} ≤
−φ2(0) − φ2(−∆) + 0.1max{0,−2φ2(0) + φ2(−∆)} ≤ 0
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Assumption 6.There exists a positive real q such that the initial

condition x0 ∈ W1,∞, and ess supθ∈[−∆0]

∣∣∣dx0(θ)dθ

∣∣∣ ≤ q. There exist

a CLKF V and an induced steepest descent feedback k (contin-

uous or not). The map φ → D+V2(φ, u) is Lipschitz on bounded

subsets of C × Rm.
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Definition 7. (Clarke et al., TAC 1997, P., SICON 2014) A par-

tition π = {ti, i = 0,1, . . . } of [0,+∞) is a countable, strictly

increasing sequence ti, with t0 = 0, such that ti → +∞ as

i → +∞. The diameter of π, denoted diam(π), is defined as

supi≥0 ti+1 − ti. The dwell-time of π, denoted dwell(π), is de-

fined as inf i≥0 ti+1 − ti. For any positive reals a ∈ (0,1], b > 0,

πa,b is any partition π with ab ≤ dwell(π) ≤ diam(π) ≤ b.
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Definition 8. (Clarke et al., TAC 1997, P., SICON 2014) We

say that a feedback F : C → Rm (continuous or not) stabilizes

the system described by the RFDE in the sample-and-hold sense

if, for every positive reals r, R, 0 < r < R, a ∈ (0,1], there

exist a positive real δ depending upon r, R, q and ∆, a posi-

tive real T , depending upon r, R, q, ∆ and a, and a positive

real E, depending upon R and ∆, such that, for any partition

πa,δ = {ti, i = 0,1, . . . }, for any initial state x0 ∈ CR, the solution

corresponding to x0 and to the sampled-data feedback control

law u(t) = F(xtk), tk ≤ t < t(k+1), k = 0,1, . . . , exists ∀t ≥ 0 and,

furthermore, satisfies:

xt ∈ CE, ∀t ≥ 0; xt ∈ Cr, ∀t ≥ T
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Theorem 9. (P., SICON 2014) Any steepest descent feedback

k (continuous or not) stabilizes the system described by (1) in

the sample-and-hold sense.
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An Example from Sliding Mode Control

delay-free case studied in Khalil’s book.

ẋ1(t) = x2(t),

ẋ2(t) = H(xt) + G(xt)u(t),

x(τ) = x0(τ), τ ∈ [−∆,0],

where: x(t) = [x1(t) x2(t)]
T ∈ R2; ∆ is an arbitrary positive

real; H : C → R, G : C → R+ are uncertain maps, Lipschitz on

bounded sets; H(0) = 0; x0 ∈ W1,∞, ess supθ∈[−∆,0]

∣∣∣dx0(θ)dθ

∣∣∣ ≤ q;

q is an arbitrary positive constant; u(t) ∈ R is the control input.
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We introduce the following standard assumption.

1) there exists a positive real g0 such that, for all φ ∈ C, the

inequality holds G(φ) ≥ g0;

2) there exist a positive real a1, a locally bounded function

ρ : C → R+ such that, for all φ ∈ C, the inequality holds

|a1φ2(0) + H(φ)| ≤ ρ(φ)G(φ)

16



Let us consider the Lyapunov-Krasovskii functional V : C → R+

defined, for φ = [ φ1 φ2 ]T ∈ C, as

V (φ) = (a1φ1(0) + φ2(0))
2 +





1
2γφ2

1(0), |φ1(0)| ≤ 1,

γ
(
|φ1(0)| − 1

2

)
, |φ1(0)| > 1,





,

with γ a suitable positive parameter which will be

chosen later. Such functional is a CLKF. Indeed,

for any φ =
[

φ1 φ2

]T
∈ C, u ∈ R, by the equality

φ1(0)φ2(0) = φ1(0)(a1φ1(0) + φ2(0)) − a1φ2
1(0), we have

D+V (φ, u) ≤ 2G(φ) (a1φ1(0) + φ2(0))

(
a1φ2(0) + H(φ)

G(φ)
+ u

)

+γ|a1φ1(0) + φ2(0)| − γa1 min
{
|φ1(0)|, φ2

1(0)
}
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Taking into account of the possibility of choosing (a sliding

mode control feedback) u = −(ρ(φ)+ k0) · sgn(a1φ1(0)+φ2(0)),

with k0 a positive real, we have, for all φ ∈ C,

inf
u∈R

D+V (φ, u) ≤ D+V (φ,−(ρ(φ) + k0) · sgn(a1φ1(0) + φ2(0))) ≤

− (2g0k0 − γ) |a1φ1(0) + φ2(0)| − γa1 min
{
|φ1(0)|, φ2

1(0)
}

.

Therefore, by choosing any γ ∈ (0,2g0k0), it follows that

infu∈RD+V (φ, u) < 0, ∀φ ∈ C, φ(0) 6= 0. Let the map k : C → R

be defined, for φ ∈ C, as

k(φ) = − (ρ(φ) + k0) sgn(a1φ1(0) + φ2(0))
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The map k is a steepest descent feedback. Indeed, let

m = µ = 1, s ≥ 0, η = min {2g0k0 − γ, a1}, p(s) = logn(1 + s),

s ≥ 0. We have, for any φ ∈ C, taking into account of the

increasing property of the function p, and that V (φ) = V1(φ(0)),

D+V (φ, k(φ)) + η max{0, D+p ◦ V1(φ, k(φ)) + µp ◦ V1(φ(0))} ≤
−min {2g0k0 − γ, a1}

(
|a1φ1(0) + φ2(0)| + γ min {|φ1(0)|, φ2

1(0)}
)

+min {2g0k0 − γ, a1} logn
(
1 + (a1φ1(0) + φ2(0))

2

+γ min
{
|φ1(0)|, φ2

1(0)
})

By the inequality logn(1 + s21 + s2)− s1 − s2 ≤ 0, ∀ s1, s2 ∈ R+, it

follows that, ∀φ ∈ C,

D+V (φ, k(φ)) + η max{0, D+p ◦ V1(φ, k(φ)) + µp ◦ V1(φ(0))} ≤ 0,

that is, k is a steepest descent feedback.
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We conclude that the steepest descent feedback k stabilizes the

system in the sample-and-hold sense. The piece-wise constant

control law is defined as follows, for t ≥ 0,

u(t) = −
(
ρ
(
xtk

)
+ k0

)
sgn(a1x1(tk) + x2(tk)),

tk ≤ t < t(k+1), k = 0,1, . . . , t0 = 0.
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Simulations have been performed with H, G defined, for

φ =

[
φ1
φ2

]
∈ C, as H(φ) = b1φ1(−∆)φ2(−∆), G(φ) = b2,

where bi, i = 1,2 are uncertain parameters, b1 ∈ [−1,1],

b2 ∈ [1,2], ∆ is a known positive constant. We can choose,

in this case, a1 = 1, ρ(φ) = |φ1(−∆)φ2(−∆)| + |φ2(0)|,
φ ∈ C. In the performed simulations, k0 = 0.1, ∆ = 1.4,

x0(τ) =

[
1
−1

]
, τ ∈ −[∆,0], a = 1 (uniform sampling), b1 = −1,

b2 = 1 are chosen. In simulations, a disturbance d(t) = dk,

kδ ≤ t < (k + 1)δ, k = 0,1, . . . , adding to the control law, is also

considered. Such disturbance is generated at each sampling

time as an element of the interval [−0.15,0.05] with uniform

probability density function.
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Figure 1: Variables x1 and x2, δ = 0.3
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Figure 2: Input Signal (plus disturbance), δ = 0.3
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Local Results

Definition 10. (P., SICON 2014) Let Q be a positive real. We

say that a feedback F : CQ → Rm (continuous or not) stabilizes

the system described by the RFDE in the sample-and-hold sense,

in CQ, if, for every positive reals r, R, 0 < r < R ≤ Q, a ∈ (0,1],

there exist a positive real δ depending upon r, R, q and ∆, a

positive real T , depending upon r, R, q, ∆ and a, and a positive

real E, depending upon R and ∆, such that, for any partition

πa,δ = {ti, i = 0,1, . . . }, for any initial state x0 ∈ CR, the solution

corresponding to x0 and to the sampled-data feedback control

law

u(t) = F(xtk), tk ≤ t < t(k+1), k = 0,1, . . . ,

exists ∀t ≥ 0 and, furthermore, satisfies:

xt ∈ CE, ∀t ≥ 0; xt ∈ Cr, ∀t ≥ T
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Theorem 11. (P., SICON 2014) Let there exist a positive real

S, a functional V : CS → R+, a map k : CS → Rm (continuous or

not) such that:

i) V is a CLKF in CS;

ii) k is a steepest descent feedback induced by V , in CS.

Then, the steepest descent feedback k stabilizes the system de-

scribed by the RFDE in the sample-and-hold sense, in CQ, where

Q is a positive real satisfying the inequality α1(S) > α2(Q), with

α1(s) = ηe−µ∆p ◦ β1(s), α2(s) = γ2(s) + ηp ◦ β2(s), s ≥ 0.
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Corollary 12. Let there exist a diffeomorphism Ψ : Ωx → Ωz,

with Ωx,Ωz ∈ Rn open, bounded neighborhoods of the origin,

functions γψ, γψ, of class K∞, a Hurwitz matrix F ∈ Rn×n, a

positive real S, a Lipschitz feedback k : CS → Rm, zero at zero,

such that: BS ⊂ Ωx;

γψ(|x|) ≤ |Ψ(x)| ≤ γψ(|x|), ∀x ∈ Ωx;

∂Ψ(x)

∂x

∣∣∣∣∣
x=φ(0)

f(φ, k(φ)) = FΨ(φ(0)), ∀φ ∈ CS

Then, there exists a positive real Q such that the feedback k :

CS → U stabilizes in the sample-and-hold sense, in CQ, the system

described by the RFDE.
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Human Glucose-Insulin System. Delays occur because of the
reaction time of the pancreas to plasma-glucose variations.
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De Gaetano, Palumbo, Panunzi, DCDS-B 2007

dG(t)

dt
= −KxgiG(t)I(t) +

Tgh

VG
,

dI(t)

dt
= −KxiI(t) +

TiGmax
VI

h
(
G(t − τg)

)
+ v(t),

G(τ) = G0, I(τ) = I0, τ ∈ [−τg,0], (2)

• G(t) [mM ] plasma glucose concentration

• I(t) [pM ] plasma insulin concentration
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The nonlinear map h(·) models the endogenous pancreatic

insulin delivery rate as

h(G) =

(
G
G∗
)γ

1 +
(
G
G∗
)γ , (3)

where γ is the progressivity with which the pancreas reacts to

circulating glucose concentrations and G∗ is the glycemia at

which the insulin release is half of its maximal rate. The control

input, v(t), is the exogenous intra-venous insulin delivery rate.
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Sample-and-hold stabilizer

Let Gref be a positive constant, safe level of glycemia. Let

Iref and vref be the positive reals such that (Gref , Iref) is an

equilibrium point for the glucose-insulin system described by the

RFDE, forced by the constant input v(t) = vref . The RFDE

can be rewritten with the new variables x(t) =

[
G(t) − Gref
I(t) − Iref

]

and with the new input u(t) = v(t) − vref . Let Ψ : R2 → R2 be

defined, for x =

[
x1
x2

]
∈ R2, as

Ψ(x) =

[
x1

−Kxgi(x1 + Gref)(x2 + Iref) + KxgiGrefIref

]
. (4)

Let Ωx, Ωz be open neighborhoods of the origin such that the

map Ψ : Ωx → Ωz defined, for x ∈ Ωx, as Ψ(x) = Ψ(x), is a

diffeomorphism.
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Let us consider the state feedback k : C → R defined, for

φ =

[
φ1
φ2

]
∈ C, as (Palumbo, P., Panunzi, De Gaetano,

DCDS-B 2009)

k(φ) =





−vref +
P
(
φ1(0)+Gref ,φ2(0)+Iref ,φ1(−τg)+Gref

)
−RΨ(φ(0))

Kxgi(φ1(0)+Gref)
,

φ1(0) 6= −Gref ,

−vref , φ1(0) = −Gref ,

(5)

where P : R3 → R is defined, for y =
[

y1 y2 y3

]T
∈ R3 as

P
(
y1, y2, y3

)
= −Kxgiy2

(
−Kxgiy1y2 +

Tgh

VG

)

−Kxgiy1

(
−Kxiy2 +

TiGmax
VI

h
(
y3

))

(6)
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Since the exogenous intra-venous insulin delivery rate cannot

be negative, we have in this case that the input v(t) must

belong to the following set V = [0, vmax], where vmax is a

suitable positive real. It follows that u(t) (and thus k(φ))

must belong to the set U = [−vref , vmax − vref ]. Since
P(Gref ,Iref ,Gref)

kxgiGref
= vref > 0, taking into account that Ψ(0) = 0,

it follows that there exists a positive real S such that, for all

φ ∈ CS, k(φ) ∈ U .
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Digital Implementation of Glucose Controller

Theorem 13. (Palumbo, P., Panunzi, De Gaetano, III DelSys

Workshop, Grenoble, 2014)

There exists a positive real Q such that the state feedback k

stabilizes in the sample-and-hold sense, in CQ, the glucose insulin-

system.

The piece-wise constant control law v(t) for the glucose-insulin

system is defined as follows, for t ≥ 0,

v(t) =

P
(
G(tk), I(tk), G(tk − τg)

)
− RΨ




 G(tk) − Gref

−KxgiG(tk)I(tk) + Tgh
VG






KxgiG(tk)
,

tk ≤ t ≤ t(k+1), k = 0,1, . . . , t0 = 0 (7)
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A case of severe hyperglycemia (establishment of a state of

frank Type 2 Diabetes Mellitus) is considered in Palumbo, P.,

Panunzi, De Gaetano, DCDS 2009. The delay τg is equal to

24 min.
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Figure 3: Evolution of the plasma glycemia G(t), with sampling

period δ = 5 min
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Figure 4: Evolution of the insulin I(t), with sampling period

δ = 5 min
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Figure 5: Control Signal, with sampling period δ = 5 min
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Linearizing Virtual Stabilizers

Definition 14. (P., CDC 2015) We say that a locally bounded
state feedback G : C → Rm (continuous or not) is a linearizing
virtual stabilizer for the nonlinear RFDE system, if there exist
a non-negative integer ω, non-negative reals ∆j, j = 0,1, . . . , ω,
with 0 = ∆0 < ∆1 < · · · < ∆ω = ∆, matrices Aj ∈ Rn×n,
j = 0,1, . . . , ω, such that, for any φ ∈ C, the equality holds,
for the map f describing the dynamics of the nonlinear RFDE
system,

f(φ, G(φ)) =
ω∑

j=0

Ajφ(−∆j),

and the linear time-delay system described by the equation

ξ̇(t) =
ω∑

j=0

Ajξ(t − ∆j), ξ0 ∈ C,

is 0-GAS.
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ẋ(t) = −x(t) + 2x(t − ∆) + |x(t)|u(t)

In this case, the map f is defined, for φ ∈ C, u ∈ R, as

f(φ, u) = −φ(0) + 2φ(−∆) + |φ(0)|u. The discontinuous map

G defined, for φ ∈ C, as G(φ) = −2sgn(φ(0)), is a linearizing

virtual stabilizer. It seems hard (maybe impossible) to find out

a continuous map such that the same goal of linearization and

(virtual) stabilization is achieved.

Corresponding linear system:

ξ̇(t) = −3ξ(t) + 2ξ(t − ∆) (8)
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Lemma 15. (Kharitonov, Zhabko, AUT 2003) If k : C → Rm is

a linearizing virtual stabilizer, then there exists a function U :

[−∆,∆] → Rn×n with the following properties:

i) U(0) is a symmetric positive definite matrix in Rn×n;

ii) U is continuous in [−∆,∆] and continuously differentiable in

[−∆,0) ∪ (0,∆], with

lim
τ→0+

dU(τ)

dτ
= lim

τ→0−

dU(τ)

dτ
− In; (9)
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iii) for the functional WU : C → R+ defined, for φ ∈ C, as

WU(φ) = φT (0)U(0)φ(0) + 2φT (0)
ω∑

j=1

∫ 0

−∆j

U(−θ − ∆j)Ajφ(θ)dθ

+
ω∑

i=1

ω∑

j=1

∫ 0

−∆i

φT (θ1)A
T
i

(∫ 0

−∆j

U(θ1 + ∆i − θ2 − ∆j)Ajφ(θ2)dθ2

)
dθ1

+
ω∑

j=1

∫ 0

−∆j

(1 + ∆j + θ)φT (θ)φ(θ)dθ

the following inequalities hold, for suitable positive reals ai,

i = 1,2,

a1|φ(0)|2 ≤ WU(φ) ≤ a2‖φ‖2∞,

D+WU(φ, k(φ)) ≤ −
∣∣∣∣
[

φT (0) φT (−∆1) . . . φT (−∆ω)
]T ∣∣∣∣

2



Theorem 16. (P., CDC 2015) Any linearizing virtual stabilizer

k : C → Rm is a stabilizer in the sample-and-hold sense.
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The linear case

ẋ(t) =
p∑

j=1

Ajx(t − ∆j) + Bu(t), x0 ∈ C, (10)
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Corollary 17. (P., CDC 2015) Let there exist (p + 1) matrices

Kj ∈ Rm×n, j = 0,1, . . . , p, such that the closed-loop system with

u(t) = K
[

xT (t) xT (t − ∆1) · · · xT (t − ∆p)
]T

,

K =
[

K0 K1 . . . Kp

]
,

is 0-GAS. Then, the feedback k : C → Rm, defined, for φ ∈ C, as

k(φ) = K
[

φT (0) φT (−∆1) · · · φT (−∆p)
]T

, is a stabilizer in

the sample-and-hold sense for the linear system.
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Work in Progress and Future Developments

• Sampled-data observer-based (continuous time) controllers

for systems described by RFDEs.

• Sample-and-hold stabilizers for nonlinear systems with time-

varying time-delays.

• Stabilization in the sample-and-hold sense of systems de-

scribed by RFDEs with discontinuous right-hand side.

• Robustness with respect to actuation disturbances and ob-

servation errors.
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