presented by Pierdomenico Pepe in

FNT2015
Fukuoka Workshop on Nonlinear Control Theory 2015
December 13, 2015, Fukuoka, Japan

Technically supported by
IEEE CSS Technical Committee on Nonlinear Systems and Control
Sampled-Data Control of Nonlinear Retarded Systems

P. Pepe

University of L’Aquila, Italy

Fukuoka Workshop on Nonlinear Control Theory
December 13th, 2015
Outline

- Nonlinear Retarded Systems, Preliminary Notions and Problem Statement
- Control Lyapunov-Krasovskii Functionals and Steepest Descent State Feedbacks
- Stabilization in the Sample-and-Hold Sense of Retarded Systems
- Local, Digital Stabilization of the Glucose-Insulin System
- Linearizers and Virtual Stabilizers as Stabilizers in the Sample-and-Hold Sense
- Work in Progress and Future Developments
Stabilization in the Sample-and-Hold Sense

Systems Described by RFDEs

\[\dot{x}(t) = f(x_t, u(t)), \quad t \geq 0, \ a.e., \]
\[x(\tau) = x_0(\tau), \quad \tau \in [-\Delta, 0], \quad x_0 \in C, \]

(1)

\(x(t) \in R^n, \ n \) is a positive integer; \(\Delta \) is a positive integer, the maximum involved time-delay; \(C \) is the Banach space of continuous functions mapping \([−\Delta, 0] \) to \(R^n \), endowed with the norm of uniform topology, denoted with \(\| \cdot \|_\infty \); \(x_t \in C \) is defined as \(x_t(\tau) = x(t + \tau), \ \tau \in [-\Delta, 0] \); \(f \) is a map from \(C \times R^m \) to \(R^n \), Lipschitz on bounded sets, zero at zero; \(m \) is a positive integer; \(u(t) \in R^m \) is a Lebesgue measurable, locally essentially bounded signal.

For a positive real \(r \), \(C_r = \{ \phi \in C : \|\phi\|_\infty \leq r \} \)
Definition 1. Let $V : \mathcal{C} \to R^+$ be a locally Lipschitz functional. The derivative $D^+V : \mathcal{C} \times R^m \to R^*$ of the functional V is defined, in the Driver’s form (see Driver, 1962, Burton, 1985, P. & Jiang, 2006, Karafyllis, 2006), for $\phi \in \mathcal{C}$, $v \in R^m$, as follows

$$D^+V(\phi, v) = \lim_{h \to 0^+} \frac{1}{h} \left(V(\phi_{h,v}) - V(\phi) \right),$$

where $\phi_{h,v} \in \mathcal{C}$ is given by

$$\phi_{h,v}(s) = \begin{cases}
\phi(s + h), & s \in [-\Delta, -h], \\
\phi(0) + f(\phi, v)(h + s), & s \in (-h, 0]
\end{cases}.$$
Theorem 2. (Karafyllis, P., Jiang, EJC 2008) Let in the RFDE (1) \(u(t) = 0, \ t \geq 0 \). The system described by the RFDE (1) is 0–GAS if and only if there exist a locally Lipschitz functional \(V : C \rightarrow R^+ \) and functions \(\alpha_1, \alpha_2 \) of class \(\mathcal{K}_\infty \), \(\alpha_3 \) of class \(\mathcal{K} \), such that, \(\forall \phi \in C \), the following inequalities hold:

i) \(\alpha_1(\|\phi\|_\infty) \leq V(\phi) \leq \alpha_2(\|\phi\|_\infty) \);

ii) \(D^+ V(\phi, 0) \leq -a_3(\|\phi\|_\infty) \)
Definition 3. (P., SICON 2014) A functional $V : \mathcal{C} \to R^+$ is said to be smoothly-separable if there exist a function $V_1 \in C^1_L(R^n; R^+)$, a locally Lipschitz functional $V_2 : \mathcal{C} \to R^+$, functions β_i of class \mathcal{K}_∞, $i = 1, 2$, such that, for any $\phi \in \mathcal{C}$, the following equality/inequality inequalities hold:

$$V(\phi) = V_1(\phi(0)) + V_2(\phi), \quad \beta_1(|\phi(0)|) \leq V_1(\phi(0)) \leq \beta_2(|\phi(0)|)$$
Definition 4. (Artstein, NA 1983, Jankovic, TAC 2001, P., SICON 2014) A smoothly-separable functional $V : \mathcal{C} \rightarrow \mathbb{R}^+$ is said to be a CLKF if there exist functions γ_1, γ_2 of class \mathcal{K}_∞ such that the following inequalities hold

\begin{enumerate}[i)]
 \item $\gamma_1(|\phi(0)|) \leq V(\phi) \leq \gamma_2(\|\phi\|_\infty)$, $\forall \phi \in \mathcal{C}$;
 \item $\inf_{u \in \mathbb{R}^m} D^+V(\phi, u) < 0$, $\forall \phi \in \mathcal{C}$, $\phi(0) \neq 0$.
\end{enumerate}
Definition 5. (P., SICON 2014) A map $k : \mathcal{C} \to U$ (continuous or not) is said to be a steepest descent feedback, induced by a CLKF V, if the following condition holds: there exist $m \in \{0, 1\}$, positive reals η and μ, a function $p \in C^1_L(R^+; R^+)$, of class \mathcal{K}_∞, such that, $\forall \phi \in \mathcal{C}$,

$$mD^+V(\phi, k(\phi)) + \eta \max\{0, D^+p \circ V_1(\phi, k(\phi)) + \mu p \circ V_1(\phi(0))\} \leq 0$$

Recall: $V(\phi) = V_1(\phi(0)) + V_2(\phi)$
\[\dot{x}(t) = x(t - \Delta) + |x(t)|u(t) \]

\[V(\phi) = V_1(\phi(0)) + V_2(\phi), \phi \in \mathcal{C} \]
\[V_1(x) = x^2, \ x \in \mathbb{R}, \quad V_2(\phi) = \int_{-\Delta}^{0} 2\phi^2(\tau)d\tau, \ \phi \in \mathcal{C} \]
\[k(\phi) = -2sgn(\phi(0)) \]

\(V \) is CLKF, \(k \) is a (discontinuous) steepest descent feedback. Indeed, for \(m = 1, \ \eta = 0.1, \ p = I_d, \ \mu = 1 \), we have, for any \(\phi \in \mathcal{C} \):

\[
\inf_{u \in \mathbb{R}} D^+ V(\phi, u) \leq D^+ V(\phi, k(\phi)) \leq -\phi^2(0) - \phi^2(-\Delta),
\]

\[
mD^+ V(\phi, k(\phi)) + \eta \max\{0, D^+ p \circ V_1(\phi, k(\phi)) + \mu V_1(\phi(0))\} \leq -\phi^2(0) - \phi^2(-\Delta) + 0.1 \max\{0, -2\phi^2(0) + \phi^2(-\Delta)\} \leq 0
\]
Assumption 6. There exists a positive real \(q \) such that the initial condition \(x_0 \in W^{1,\infty} \), and \(\text{ess sup}_{\theta \in [-\Delta_0]} \left| \frac{dx_0(\theta)}{d\theta} \right| \leq q \). There exist a CLKF \(V \) and an induced steepest descent feedback \(k \) (continuous or not). The map \(\phi \to D^+V_2(\phi, u) \) is Lipschitz on bounded subsets of \(C \times R^m \).
Definition 7. (Clarke et al., TAC 1997, P., SICON 2014) A partition \(\pi = \{t_i, \ i = 0,1,\ldots\} \) of \([0, +\infty)\) is a countable, strictly increasing sequence \(t_i \), with \(t_0 = 0 \), such that \(t_i \to +\infty \) as \(i \to +\infty \). The diameter of \(\pi \), denoted \(\text{diam}(\pi) \), is defined as \(\sup_{i \geq 0} t_{i+1} - t_i \). The dwell-time of \(\pi \), denoted \(\text{dwell}(\pi) \), is defined as \(\inf_{i \geq 0} t_{i+1} - t_i \). For any positive reals \(a \in (0,1], \ b > 0 \), \(\pi_{a,b} \) is any partition \(\pi \) with \(ab \leq \text{dwell}(\pi) \leq \text{diam}(\pi) \leq b \).
Definition 8. (Clarke et al., TAC 1997, P., SICON 2014) We say that a feedback $F : \mathcal{C} \rightarrow \mathbb{R}^m$ (continuous or not) stabilizes the system described by the RFDE in the sample-and-hold sense if, for every positive reals r, R, $0 < r < R$, $a \in (0, 1]$, there exist a positive real δ depending upon r, R, q and Δ, a positive real T, depending upon r, R, q, Δ and a, and a positive real E, depending upon R and Δ, such that, for any partition $\pi_{a,\delta} = \{t_i, \, i = 0, 1, \ldots\}$, for any initial state $x_0 \in \mathcal{C}_R$, the solution corresponding to x_0 and to the sampled-data feedback control law $u(t) = F(x_{t_k}), \, t_k \leq t < t_{(k+1)}, \, k = 0, 1, \ldots$, exists $\forall t \geq 0$ and, furthermore, satisfies:

$$x_t \in \mathcal{C}_E, \, \forall t \geq 0; \quad x_t \in \mathcal{C}_r, \, \forall t \geq T$$
Theorem 9. (P., SICON 2014) Any steepest descent feedback k (continuous or not) stabilizes the system described by (1) in the sample-and-hold sense.
An Example from Sliding Mode Control

delay-free case studied in Khalil’s book.

\[\begin{align*}
\dot{x}_1(t) &= x_2(t), \\
\dot{x}_2(t) &= H(x_t) + G(x_t)u(t), \\
x(\tau) &= x_0(\tau), \quad \tau \in [-\Delta, 0],
\end{align*} \]

where: \(x(t) = [x_1(t) \ x_2(t)]^T \in R^2; \) \(\Delta \) is an arbitrary positive real; \(H : C \rightarrow R, \ G : C \rightarrow R^+ \) are uncertain maps, Lipschitz on bounded sets; \(H(0) = 0; \) \(x_0 \in W^{1,\infty}, \ ess \sup_{\theta \in [-\Delta, 0]} \left| \frac{dx_0(\theta)}{d\theta} \right| \leq q; \) \(q \) is an arbitrary positive constant; \(u(t) \in R \) is the control input.
We introduce the following standard assumption.

1) there exists a positive real g_0 such that, for all $\phi \in \mathcal{C}$, the inequality holds $G(\phi) \geq g_0$;

2) there exist a positive real a_1, a locally bounded function $\rho : \mathcal{C} \to \mathbb{R}^+$ such that, for all $\phi \in \mathcal{C}$, the inequality holds $|a_1\phi_2(0) + H(\phi)| \leq \rho(\phi)G(\phi)$
Let us consider the Lyapunov-Krasovskii functional $V : C \to \mathbb{R}^+$ defined, for $\phi = [\phi_1 \phi_2]^T \in C$, as

$$V(\phi) = (a_1 \phi_1(0) + \phi_2(0))^2 + \begin{cases}
\frac{1}{2} \gamma \phi_1^2(0), & |\phi_1(0)| \leq 1, \\
\gamma \left(|\phi_1(0)| - \frac{1}{2} \right), & |\phi_1(0)| > 1,
\end{cases}$$

with γ a suitable positive parameter which will be chosen later. Such functional is a CLKF. Indeed, for any $\phi = [\phi_1 \phi_2]^T \in C$, $u \in \mathbb{R}$, by the equality

$$\phi_1(0)\phi_2(0) = \phi_1(0)(a_1 \phi_1(0) + \phi_2(0)) - a_1 \phi_1^2(0),$$

we have

$$D^+ V(\phi, u) \leq 2G(\phi) (a_1 \phi_1(0) + \phi_2(0)) \left(\frac{a_1 \phi_2(0) + H(\phi)}{G(\phi)} + u \right) + \gamma |a_1 \phi_1(0) + \phi_2(0)| - \gamma a_1 \min \left\{ |\phi_1(0)|, \phi_1^2(0) \right\}$$
Taking into account of the possibility of choosing (a sliding mode control feedback) \(u = -(\rho(\phi) + k_0) \cdot sgn(a_1\phi_1(0) + \phi_2(0)) \), with \(k_0 \) a positive real, we have, for all \(\phi \in C \),

\[
\inf_{u \in \mathbb{R}^D} D^+ V(\phi, u) \leq D^+ V(\phi, -(\rho(\phi) + k_0) \cdot sgn(a_1\phi_1(0) + \phi_2(0))) \leq -(2g_0k_0 - \gamma)|a_1\phi_1(0) + \phi_2(0)| - \gamma a_1 \min \{|\phi_1(0)|, \phi_1^2(0)\}.
\]

Therefore, by choosing any \(\gamma \in (0, 2g_0k_0) \), it follows that \(\inf_{u \in \mathbb{R}} D^+ V(\phi, u) < 0, \forall \phi \in C, \phi(0) \neq 0 \). Let the map \(k : C \to \mathbb{R} \) be defined, for \(\phi \in C \), as

\[
k(\phi) = -(\rho(\phi) + k_0) sgn(a_1\phi_1(0) + \phi_2(0))
\]
The map k is a steepest descent feedback. Indeed, let
$m = \mu = 1$, $s \geq 0$, $\eta = \min \{2g_0k_0 - \gamma, \ a_1\}$, $p(s) = \log n(1 + s)$,
$s \geq 0$. We have, for any $\phi \in C$, taking into account of the
increasing property of the function p, and that $V(\phi) = V_1(\phi(0))$,

$$D^+ V(\phi, k(\phi)) + \eta \max \{0, \ D^+ p \circ V_1(\phi, k(\phi)) + \mu p \circ V_1(\phi(0))\} \leq$$
$$- \min \{2g_0k_0 - \gamma, \ a_1\} \left(|a_1\phi_1(0) + \phi_2(0)| + \gamma \min \{|\phi_1(0)|, \ \phi_1^2(0)\} \right)$$
$$+ \min \{2g_0k_0 - \gamma, \ a_1\} \log n \left(1 + (a_1\phi_1(0) + \phi_2(0))^2 \right)$$
$$+ \gamma \min \{|\phi_1(0)|, \ \phi_1^2(0)\} \right)$$

By the inequality $\log n(1 + s_1^2 + s_2) - s_1 - s_2 \leq 0$, $\forall \ s_1, s_2 \in R^+$, it
follows that, $\forall \phi \in C$,

$$D^+ V(\phi, k(\phi)) + \eta \max \{0, \ D^+ p \circ V_1(\phi, k(\phi)) + \mu p \circ V_1(\phi(0))\} \leq 0,$$
that is, k is a steepest descent feedback.
We conclude that the steepest descent feedback k stabilizes the system in the sample-and-hold sense. The piece-wise constant control law is defined as follows, for $t \geq 0$,

$$u(t) = -\left(\rho \left(x_{t_k}\right) + k_0\right) \text{sgn}(a_1 x_1(t_k) + x_2(t_k)),$$

$$t_k \leq t < t_{(k+1)}, \quad k = 0, 1, \ldots, \quad t_0 = 0.$$
Simulations have been performed with H, G defined, for
\[\phi = \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} \in C, \] as
\[H(\phi) = b_1 \phi_1(-\Delta)\phi_2(-\Delta), \quad G(\phi) = b_2, \]
where b_i, $i = 1, 2$ are uncertain parameters, $b_1 \in [-1, 1]$,
$b_2 \in [1, 2]$, Δ is a known positive constant. We can choose,
in this case, $a_1 = 1$, $\rho(\phi) = |\phi_1(-\Delta)\phi_2(-\Delta)| + |\phi_2(0)|$,
$\phi \in C$. In the performed simulations, $k_0 = 0.1$, $\Delta = 1.4$,
\[x_0(\tau) = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \quad \tau \in [-\Delta, 0], \quad a = 1 \quad \text{(uniform sampling)}, \quad b_1 = -1, \]
$b_2 = 1$ are chosen. In simulations, a disturbance $d(t) = d_k$,
k$\delta \leq t < (k + 1)\delta$, $k = 0, 1, \ldots$, adding to the control law, is also
considered. Such disturbance is generated at each sampling
time as an element of the interval $[-0.15, 0.05]$ with uniform
probability density function.
Figure 1: Variables x_1 and x_2, $\delta = 0.3$
Figure 2: Input Signal (plus disturbance), $\delta = 0.3$
Local Results

Definition 10. (P., SICON 2014) Let Q be a positive real. We say that a feedback $F : \mathcal{C}_Q \to \mathbb{R}^m$ (continuous or not) stabilizes the system described by the RFDE in the sample-and-hold sense, in \mathcal{C}_Q, if, for every positive reals r, R, $0 < r < R \leq Q$, $a \in (0, 1]$, there exist a positive real δ depending upon r, R, q and Δ, a positive real T, depending upon r, R, q, Δ and a, and a positive real E, depending upon R and Δ, such that, for any partition $\pi_{a,\delta} = \{t_i, \ i = 0, 1, \ldots \}$, for any initial state $x_0 \in \mathcal{C}_R$, the solution corresponding to x_0 and to the sampled-data feedback control law

$$u(t) = F(x_{t_k}), \quad t_k \leq t < t_{(k+1)}, \quad k = 0, 1, \ldots,$$

exists $\forall t \geq 0$ and, furthermore, satisfies:

$$x_t \in \mathcal{C}_E, \ \forall t \geq 0; \quad x_t \in \mathcal{C}_r, \ \forall t \geq T$$
Theorem 11. (*P., SICON 2014*) Let there exist a positive real S, a functional $V : \mathcal{C}_S \rightarrow R^+$, a map $k : \mathcal{C}_S \rightarrow R^m$ (continuous or not) such that:

i) V is a CLKF in \mathcal{C}_S;

ii) k is a steepest descent feedback induced by V, in \mathcal{C}_S.

Then, the steepest descent feedback k stabilizes the system described by the RFDE in the sample-and-hold sense, in \mathcal{C}_Q, where Q is a positive real satisfying the inequality $\alpha_1(S) > \alpha_2(Q)$, with

$$\alpha_1(s) = \eta e^{-\mu \Delta} p \circ \beta_1(s), \quad \alpha_2(s) = \gamma_2(s) + \eta p \circ \beta_2(s), \quad s \geq 0.$$
Corollary 12. Let there exist a diffeomorphism \(\Psi : \Omega_x \rightarrow \Omega_z \), with \(\Omega_x, \Omega_z \in \mathbb{R}^n \) open, bounded neighborhoods of the origin, functions \(\gamma_\psi, \bar{\gamma}_\psi \), of class \(K_\infty \), a Hurwitz matrix \(F \in \mathbb{R}^{n \times n} \), a positive real \(S \), a Lipschitz feedback \(k : \mathcal{C}_S \rightarrow \mathbb{R}^m \), zero at zero, such that: \(B_S \subset \Omega_x \);

\[
\gamma_\psi(|x|) \leq |\Psi(x)| \leq \bar{\gamma}_\psi(|x|), \quad \forall x \in \Omega_x;
\]

\[
\left. \frac{\partial \Psi(x)}{\partial x} \right|_{x=\phi(0)} f(\phi, k(\phi)) = F \Psi(\phi(0)), \quad \forall \phi \in \mathcal{C}_S
\]

Then, there exists a positive real \(Q \) such that the feedback \(k : \mathcal{C}_S \rightarrow U \) stabilizes in the sample-and-hold sense, in \(\mathcal{C}_Q \), the system described by the RFDE.
Human Glucose-Insulin System. Delays occur because of the reaction time of the pancreas to plasma-glucose variations.
\[
\frac{dG(t)}{dt} = -K_{xg} G(t) I(t) + \frac{T_{gh}}{V_G},
\]
\[
\frac{dI(t)}{dt} = -K_{xi} I(t) + \frac{T_{iG\text{max}}}{V_I} h(G(t - \tau_g)) + v(t),
\]
\[
G(\tau) = G_0, \quad I(\tau) = I_0, \quad \tau \in [-\tau_g, 0], \quad (2)
\]

- \(G(t) \) \([mM]\) plasma glucose concentration
- \(I(t) \) \([pM]\) plasma insulin concentration
The nonlinear map $h(\cdot)$ models the endogenous pancreatic insulin delivery rate as

$$h(G') = \frac{(\frac{G}{G^*})^\gamma}{1 + (\frac{G}{G^*})^\gamma},$$

where γ is the progressivity with which the pancreas reacts to circulating glucose concentrations and G^* is the glycemia at which the insulin release is half of its maximal rate. The control input, $v(t)$, is the exogenous intra-venous insulin delivery rate.
Sample-and-hold stabilizer

Let G_{ref} be a positive constant, safe level of glycemia. Let I_{ref} and v_{ref} be the positive reals such that (G_{ref}, I_{ref}) is an equilibrium point for the glucose-insulin system described by the RFDE, forced by the constant input $v(t) = v_{ref}$. The RFDE can be rewritten with the new variables $x(t) = \begin{bmatrix} G(t) - G_{ref} \\ I(t) - I_{ref} \end{bmatrix}$ and with the new input $u(t) = v(t) - v_{ref}$. Let $\Psi : \mathbb{R}^2 \to \mathbb{R}^2$ be defined, for $x = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \in \mathbb{R}^2$, as

$$\Psi(x) = \begin{bmatrix} x_1 \\ -K_{xgi}(x_1 + G_{ref})(x_2 + I_{ref}) + K_{xgi}G_{ref}I_{ref} \end{bmatrix}. \quad (4)$$

Let Ω_x, Ω_z be open neighborhoods of the origin such that the map $\Psi : \Omega_x \to \Omega_z$ defined, for $x \in \Omega_x$, as $\Psi(x) = \Psi(x)$, is a diffeomorphism.
Let us consider the state feedback $k : \mathcal{C} \rightarrow \mathcal{R}$ defined, for

$\phi = \begin{bmatrix} \phi_1 \\ \phi_2 \end{bmatrix} \in \mathcal{C}$, as (Palumbo, P., Panunzi, De Gaetano, DCD\textit{S}-B 2009)

$$k(\phi) = \begin{cases}
-v_{\text{ref}} + \frac{\mathcal{P}(\phi_1(0)+G_{\text{ref}},\phi_2(0)+I_{\text{ref}},\phi_1(-\tau_g)+G_{\text{ref}}) - R\Psi(\phi(0))}{K_{xgi}(\phi_1(0)+G_{\text{ref}})} & , \\
\quad \phi_1(0) \neq -G_{\text{ref}}, \\
-v_{\text{ref}}, & \phi_1(0) = -G_{\text{ref}},
\end{cases}$$

(5)

where $\mathcal{P} : \mathcal{R}^3 \rightarrow \mathcal{R}$ is defined, for $y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}^T \in \mathcal{R}^3$ as

$$\mathcal{P}(y_1, y_2, y_3) = -K_{xgi}y_2 \left(-K_{xgi}y_1y_2 + \frac{T_{gh}}{V_G} \right)$$

$$-K_{xgi}y_1 \left(-K_{xi}y_2 + \frac{T_{iG_{\text{max}}}}{V_I} h(y_3) \right)$$

(6)
Since the exogenous intra-venous insulin delivery rate cannot be negative, we have in this case that the input $v(t)$ must belong to the following set $\overline{V} = [0, v_{max}]$, where v_{max} is a suitable positive real. It follows that $u(t)$ (and thus $k(\phi)$) must belong to the set $U = [−v_{ref}, v_{max} − v_{ref}]$. Since
\[
P(G_{ref},I_{ref},G_{ref}) \frac{k_{xgi}G_{ref}}{k_{xgi}G_{ref}} = v_{ref} > 0,
\]
taking into account that $\Psi(0) = 0$, it follows that there exists a positive real S such that, for all $\phi \in C_S$, $k(\phi) \in U$.
Digital Implementation of Glucose Controller

There exists a positive real Q such that the state feedback k stabilizes in the sample-and-hold sense, in C_Q, the glucose insulin-system.

The piece-wise constant control law $v(t)$ for the glucose-insulin system is defined as follows, for $t \geq 0$,

$$v(t) = \frac{\mathcal{P}(G(t_k), I(t_k), G(t_k - \tau_g)) - R\Psi \left(\begin{bmatrix} G(t_k) - G_{ref} \\ -K_{xgi}G(t_k)I(t_k) + \frac{Tgh}{V_G} \end{bmatrix} \right)}{K_{xgi}G(t_k)},$$

$$t_k \leq t \leq t_{(k+1)}, \ k = 0, 1, \ldots, \ t_0 = 0$$

(7)
A case of severe hyperglycemia (establishment of a state of frank Type 2 Diabetes Mellitus) is considered in Palumbo, P., Panunzi, De Gaetano, DCDS 2009. The delay τ_g is equal to 24 min.
Figure 3: Evolution of the plasma glycemia $G(t)$, with sampling period $\delta = 5 \text{ min}$
Figure 4: Evolution of the insulin $I(t)$, with sampling period $\delta = 5 \text{ min}$
Figure 5: Control Signal, with sampling period $\delta = 5 \text{ min}$
Definition 14. *(P., CDC 2015)* We say that a locally bounded state feedback $G : \mathcal{C} \to \mathbb{R}^m$ (continuous or not) is a linearizing virtual stabilizer for the nonlinear RFDE system, if there exist a non-negative integer ω, non-negative reals Δ_j, $j = 0, 1, \ldots, \omega$, with $0 = \Delta_0 < \Delta_1 < \cdots < \Delta_\omega = \Delta$, matrices $A_j \in \mathbb{R}^{n \times n}$, $j = 0, 1, \ldots, \omega$, such that, for any $\phi \in \mathcal{C}$, the equality holds, for the map f describing the dynamics of the nonlinear RFDE system,

$$f(\phi, G(\phi)) = \sum_{j=0}^{\omega} A_j \phi(-\Delta_j),$$

and the linear time-delay system described by the equation

$$\dot{\xi}(t) = \sum_{j=0}^{\omega} A_j \xi(t - \Delta_j), \quad \xi_0 \in \mathcal{C},$$

is 0-GAS.
\[\dot{x}(t) = -x(t) + 2x(t - \Delta) + |x(t)|u(t) \]

In this case, the map \(f \) is defined, for \(\phi \in C, u \in \mathbb{R} \), as
\[f(\phi, u) = -\phi(0) + 2\phi(-\Delta) + |\phi(0)|u. \]

The discontinuous map \(G \) defined, for \(\phi \in C \), as \(G(\phi) = -2sgn(\phi(0)) \), is a linearizing virtual stabilizer. It seems hard (maybe impossible) to find out a continuous map such that the same goal of linearization and (virtual) stabilization is achieved.

Corresponding linear system:
\[\dot{\xi}(t) = -3\xi(t) + 2\xi(t - \Delta) \quad (8) \]
Lemma 15. (Kharitonov, Zhabko, AUT 2003) If $k : C \to \mathbb{R}^m$ is a linearizing virtual stabilizer, then there exists a function $U : [-\Delta, \Delta] \to \mathbb{R}^{n \times n}$ with the following properties:

i) $U(0)$ is a symmetric positive definite matrix in $\mathbb{R}^{n \times n}$;

ii) U is continuous in $[-\Delta, \Delta]$ and continuously differentiable in $[-\Delta, 0) \cup (0, \Delta]$, with

$$
\lim_{\tau \to 0^+} \frac{dU(\tau)}{d\tau} = \lim_{\tau \to 0^-} \frac{dU(\tau)}{d\tau} - I_n;
$$

(9)
iii) for the functional $W_U : C \rightarrow R^+$ defined, for $\phi \in C$, as

$$W_U(\phi) = \phi^T(0)U(0)\phi(0) + 2\phi^T(0) \sum_{j=1}^{\bar{\omega}} \int_{-\Delta_j}^{0} U(-\theta - \Delta_j)A_j\phi(\theta)d\theta$$

$$+ \sum_{i=1}^{\bar{\omega}} \sum_{j=1}^{\bar{\omega}} \int_{-\Delta_i}^{0} \phi^T(\theta_1)A_i^T \left(\int_{-\Delta_j}^{0} U(\theta_1 + \Delta_i - \theta_2 - \Delta_j)A_j\phi(\theta_2)d\theta_2 \right) d\theta_1$$

$$+ \sum_{j=1}^{\bar{\omega}} \int_{-\Delta_j}^{0} (1 + \Delta_j + \theta)\phi^T(\theta)\phi(\theta)d\theta$$

the following inequalities hold, for suitable positive reals a_i, $i = 1, 2,$

$$a_1|\phi(0)|^2 \leq W_U(\phi) \leq a_2\|\phi\|_\infty^2,$$

$$D^+W_U(\phi, k(\phi)) \leq -\left| \begin{bmatrix} \phi^T(0) & \phi^T(-\Delta_1) & \cdots & \phi^T(-\Delta_\omega) \end{bmatrix}^T \right|^2$$
Theorem 16. (P., CDC 2015) Any linearizing virtual stabilizer $k : C \rightarrow R^m$ is a stabilizer in the sample-and-hold sense.
The linear case

\[\dot{x}(t) = \sum_{j=1}^{p} A_j x(t - \Delta_j) + B u(t), \quad x_0 \in \mathcal{C}, \quad (10) \]
Corollary 17. (P., CDC 2015) Let there exist \((p + 1)\) matrices \(K_j \in \mathbb{R}^{m \times n}, j = 0, 1, \ldots, p\), such that the closed-loop system with

\[
u(t) = K \left[x^T(t) \ x^T(t - \Delta_1) \ \cdots \ x^T(t - \Delta_p) \right]^T,
\]

\[
K = \left[\begin{array}{cccc}
K_0 & K_1 & \cdots & K_p \\
\end{array} \right],
\]

is 0-GAS. Then, the feedback \(k : \mathcal{C} \to \mathbb{R}^m\), defined, for \(\phi \in \mathcal{C}\), as

\[
k(\phi) = K \left[\phi^T(0) \ \phi^T(-\Delta_1) \ \cdots \ \phi^T(-\Delta_p) \right]^T,
\]

is a stabilizer in the sample-and-hold sense for the linear system.
Work in Progress and Future Developments

- Sampled-data observer-based (continuous time) controllers for systems described by RFDEs.

- Sample-and-hold stabilizers for nonlinear systems with time-varying time-delays.

- Stabilization in the sample-and-hold sense of systems described by RFDEs with discontinuous right-hand side.

- Robustness with respect to actuation disturbances and observation errors.
I wish to express my gratitude to Hiroshi Ito for kindly inviting me to deliver this talk.

Special thanks to all of you for attending!

University of L’Aquila