

Mathematical Modeling of Diabetes

Dr. Shyam Kamal

Department of Systems Design and Informatics Kyushu Institute of Technology Japan

kamal@ces.kyutech.ac.jp

20 May 2016

₿

 QQ

メロメ メ都 メメ きょ メモメ

[Role of Glucose](#page-2-0)

[Homeostasis](#page-4-0)

[Glucose Regulation](#page-9-0)

[Diabetes and Its Types](#page-12-0)

[Detection of Diabetes](#page-15-0)

 QQ

E

K ロ K K 個 K K 差 K K 差 K …

Body's principle fuels: Glucose

- \triangleright Glucose: from starch (a chain of glucose molecule)-rich foods such as potatoes, rice, bread and pasta
- Andenosine triphosphate (ATP): produce from glucose broken down in our cells.
- \triangleright Metabolism: biochemical reactions within a living organism in order to maintained life is powered by ATP (small pack[et o](#page-1-0)[f c](#page-3-0)[h](#page-1-0)[em](#page-2-0)[ic](#page-3-0)[a](#page-1-0)[l](#page-2-0) [e](#page-3-0)[ne](#page-4-0)[r](#page-1-0)[g](#page-2-0)[y\)](#page-3-0)[.](#page-4-0)

 $Q \cap \mathcal{Q}$

Auto-regulatory of Blood glucose

- \triangleright In the small intestine, glucose is absorbed into the blood and travel to the liver via the hepatic portal vein.
- \triangleright This stored glucose can be reconverted when blood-glucose levels falls.

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

Homeostasis

- \blacktriangleright Homeostasis: maintenance of a steady internal state, despite changes in external or internal conditions.
- \triangleright Role: maintains a steady but not static internal state within organisms.
- \triangleright Advantage: Individual can quickly adapt to their environment so that normal health is not disturbed. $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right\}$, $\left\{ \begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right\}$

 Ω

Examples of Homeostasis

Many variables are maintained by Homeostasis

- \blacktriangleright Temperature
- \blacktriangleright Blood pH
- \blacktriangleright Blood sugar
- \blacktriangleright Water balance
- \triangleright Blood pressure
- \blacktriangleright Ion balance

In this lecture I am going to focus on regulation of blood sugar.

 Ω

メロメ メ都 メメ きょ メモメ

 QQ

E

Regulation in Healthy Systems

The endocrine system is made up of glands that produce and secrete hormones, chemical substances produced in the body that regulate the activity of cells or organs.

 -200

 Ω

CONTRACTOR

Hormones

- \triangleright Hormones are chemical messengers created by the body.
- \triangleright They transfer information from one set of cells to another (via blood vessel) to coordinate the functions of different parts of the body.
- \triangleright Hormones regulate the body's growth, metabolism (the physical and chemical processes of the body), and sexual development and function. イロト イ押ト イヨト イヨト

 Ω

Glucose Regulation from a Biological Perspective

Key Organs and Hormones

- \triangleright Key organs that control blood glucose: the pancreas and the liver
- \triangleright Key hormones: insulin and glucagon

 QQ

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Clusters of endocrines cells

- \triangleright α -cells: produce glucagon
- \triangleright β -cells: produce insulin

目

 QQ

イロト イ押 トイヨ トイヨ トー

Role of Insulin and Glucagon in Regulation

 Ω

目

- It is a disease of metabolism which is characterized by too much sugar in the blood and urine.
- \triangleright In diabetes, the body is unable to burn of all its sugars, starches, and carbohydrates because of an insufficient supply of insulin.
- \triangleright Diabetes in usually diagnosed by means of a glucose tolerance test (GTT).

Types:

- \triangleright Type I Diabetes: an endocrine disorder caused by a deficiency of insulin
- \triangleright Type II Diabetes: caused by a decreased response to insulin in target tissues K ロ) (K 個) (K 편) (K 편) () 편 .

 Ω

Type I: insulin-dependent diabetes

- \triangleright It is an autoimmune disorder in which the immune system destroys the β -cells of the pancreas.
- \triangleright As a result, the persons ability to produce insulin is greatly inhibited.
- \blacktriangleright It is treated with insulin injections.

 Ω

イロト イ押 トイヨ トイヨト

Type II: insulin-independent diabetes

- \triangleright It is caused by a reduced responsiveness of insulin target cells due to some change in the insulin receptors.
- \triangleright Heredity can play a role, but research indicates that excess body weight and lack of exercise significantly inc[rea](#page-13-0)s[es](#page-15-0)[r](#page-13-0)[isk](#page-14-0)[.](#page-15-0)

 Ω

Mathematical Model for the Detection of Diabetes

The basic model to described insulin-glucose interactions

$$
\frac{dG}{dt} = F_1(G, H) + J(t)
$$

$$
\frac{dH}{dt} = F_2(G, H)
$$

- \triangleright $G :=$ concentrations of glucose in the blood
- $H =$ net hormonal concentrations
- \blacktriangleright F₁ and F₂ changes in G and H
- \blacktriangleright $J(t) :=$ external rate at which the blood glucose concentration being increased

メロメ メ都 メメ きょ メモメ

Deviations of G and H from their optimal values

- \triangleright We assume that G and H have achieved optimal values G_0 and H_0 by the time the fasting patient has arrived at the hospital.
- \blacktriangleright This implies that

$$
F_1(G_0,H_0)=0 \text{ and } F_2(G_0,H_0)=0.
$$

Since we are interested here in the deviations of G and H from their optimal values, we make the substitution

$$
g := G - G_0, \quad h := H - H_0.
$$

Then

$$
\frac{dg}{dt} = F_1(G_0 + g, H_0 + h) + J(t)
$$

$$
\frac{dh}{dt} = F_2(G_0 + g, H_0 + h)
$$

 Ω

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right. \times \left\{ \begin{array}{ccc} \frac{1}{2} & 0 & 0 \\ 0 & 0 & 0 \end{array} \right.$

Linearization

Now observer that

$$
F_1(G_0+g, H_0+h) = F_1(G_0, H_0) + \frac{\partial F_1(G_0, H_0)}{\partial G}g + \frac{\partial F_1(G_0, H_0)}{\partial H}h + e_1
$$

$$
F_2(G_0+g, H_0+h) = F_2(G_0, H_0) + \frac{\partial F_2(G_0, H_0)}{\partial G}g + \frac{\partial F_2(G_0, H_0)}{\partial H}h + e_2
$$

where e_1 and e_2 and very small compared to g and h .

Assuming that G and H deviate only slightly from G_0 and H_0

$$
\frac{dg}{dt} \approx \frac{\partial F_1(G_0, H_0)}{\partial G} g + \frac{\partial F_1(G_0, H_0)}{\partial H} h + J_1
$$
\n
$$
\frac{dh}{dt} \approx \frac{\partial F_2(G_0, H_0)}{\partial G} g + \frac{\partial F_2(G_0, H_0)}{\partial H} h
$$

Simplified model of the blood glucose regulatory system

 $2Q$

E

- \blacktriangleright dg/dt is negative for $g > 0$ and $h = 0$, since the blood glucose concentration will be decreasing through tissue uptake of glucose and the storing of excess glucose in the liver in the form of glycogen. Consequently $\partial F_1(G_0, H_0)/\partial G$ must be negative.
- \triangleright Similarly, $\partial F_1(G_0, H_0)/\partial H$ is negative since a positive value of h tends to decrease blood glucose levels by facilitating tissue uptake of glucose and by increasing the rate at which glucose is converted to glycogen.
- ► The number $\partial F_2(G_0, H_0)/\partial G$ must be positive since a positive value of g causes the endocrine glands to secrete those hormones which tend to increase H.
- Finally, $\partial F_2(G_0, H_0)/\partial H$ must be negative, since the concentration of hormones in the blood decreases through hormone metabolism.

 Ω

지수는 지금에게 지금 되지 않아.

Mathematical Model

We can write

$$
\frac{dg}{dt} = -m_1g - m_2h + J_1
$$

$$
\frac{dh}{dt} = -m_3h + m_4g
$$

where m_1 , m_2 , m_3 and m_4 are positive constants.

 \triangleright Since we only measure the concentration of glucose in the blood, we would like to remove the variable h.

Differentiating first equation w.r.t time and substituting dh/dt

$$
\frac{d^2g}{dt^2} = -m_1\frac{dg}{dt} - m_2\frac{dh}{dt} + \frac{dJ}{dt}
$$

$$
= -m_1\frac{dg}{dt} + m_2m_3h - m_2m_4g + \frac{dJ}{dt}
$$

Mathematical Model Continued...

Substituting $m_2h = (-dg/dt) - m_1g + J(t)$ in last equation, one can write

$$
\frac{d^2g}{dt^2} + (m_1 + m_3)\frac{dg}{dt} + (m_1m_3 + m_2m_4)g = m_3J + \frac{dJ}{dt}
$$

We rewrite this equation in the form

$$
\frac{d^2g}{dt^2} + 2\alpha \frac{dg}{dt} + \omega_0^2 g = S(t)
$$

where $\alpha = (m_1 + m_3)/2, \omega_0^2 = m_1 m_3 + m_2 m_4$ and $S(t) = m_3 J + dJ/dt$.

 QQ

Analysis of Mathematical Model

- \triangleright Notice that the right-hand side of last equation is identically zero except for the very short time interval in which the glucose load is being ingested.
- ▶ Therefore, for $t > 0$, we can get

$$
\frac{d^2g}{dt^2} + 2\alpha \frac{dg}{dt} + \omega_0^2 g = 0
$$

Solution of above differential equation is

$$
g(t) = Ae^{-\alpha t} \cos(\omega t - \delta), \ \ \omega^2 = \omega_0^2 - \alpha^2
$$

- ► Consequently, $G(t) = G_0 + Ae^{-\alpha t} \cos(\omega t \delta)$
- \triangleright Conclusion: Thus our model certainly conforms to reality in predicting that the blood glucose concentration tends to return eventually to its optimal concent[rat](#page-21-0)[io](#page-23-0)[n.](#page-21-0)

Determination of parameters of analytical solution

► There are five unknowns in $G(t) = G_0 + Ae^{-\alpha t} \cos(\omega t - \delta)$

One way of determining them is as follows.

- \triangleright The patient's blood glucose concentration before the glucose load is ingested is $G₀$.
- \blacktriangleright Hence, we can determine G_0 by measuring the patient's blood glucose concentration immediately upon his arrival at the hospital.
- \triangleright Next, if we take four additional measurements G_1, G_2, G_3 , and G_4 of the patient's blood glucose concentration at times t_1, t_2, t_3 , and t_4 , then we can determine A, α, ω_0 , and δ from the four equations

$$
G_j = G_0 + Ae^{-\alpha t_j} \cos(\omega t_j - \delta), \ \ j = 1, \cdots, 4
$$

If Note: Natural period of differential equ[atio](#page-22-0)[n](#page-24-0) $T_0 = 2\pi/\omega_0$ $T_0 = 2\pi/\omega_0$ **[.](#page-25-0)**

 Ω

 \triangleright The remarkable fact is that data from a variety of sources indicated that a value of less than four hours for $T_0 = 2\pi/\omega_0$ indicated normalcy, while appreciably more than four hours implied mild diabetes.

 Ω

イロト イ部 トイモト イモトー

The End

 $2Q$

重

メロト メタト メミト メミト