Errata for IEEE TRANS. AUOMAT. CONTROL, VOL.61, NO.6, PP.1508-1523 DOI: 10.1109/TAC.2015.2471777
by H. Ito and Y. Nishimura

Errata for page 1517

P{lz(t)| < oo, Vi e Ry} =1,

I
P{gqr(t)n <1 (aum(om [ (r(rmdr) ,
0

Yz (0) € RY (58)

we[o,z]} >1—¢ VieRy,Y2(0)eRY \ {0}, Yee (0,1).

. (59)
L]
L

E[V(z(ta A D)) < V(2(0) +e(t) (62)

follows from £V < o (|r|). Using P{t4 < t}inf, |54 V(y) <
E[V(z(ta At))] implied by (61), from (62) we obtain

V(z(0)) + e(t).

P{ta <t} < a(A)

(63)

(5). By definition, we have »(0) =V (2(0)) < z(0) and v(¢) >0
for all t€Ry. Given | € Ry, for each ¢, 2(0) and r, define
T(l)e[0,00] as

T() :==mf{t > 0:0(t) > ()}, (65)

given ¢, z(0) and r it holds for each [ € R, that

{T() <t} eF, VteR,. (66)
Thus, applying the argument of [17, Proof of Lemma 3.2, p.73]
to the stopped process z(1' A ¢) with (66), we obtain

TAt
Elo(T At) =V(z(0)+E /[; LV (z(r))dr

for each ¢ € R.y. Property LV < o(|r|) yields
E(T At)] < V(2(0) +e(t) 67)
since T' A ¢ < ¢. The definition of T" and »(t) > 0 yield
E[v(T At)] = Ellir<qv(T)] = 2(OP{T < t}, (08)

where Iip<4 is the indicator function of the set {7 € R, :
T < ¢}. Combining (68) with (67) yields

V(@(0) + et) > 2()P{T() < £} (©9)
for each [ € R.. Substituting (64) into (69) gives
e>P(TQ) <1}, Vee[o,]. a0y

By virtue of T' defined in (65) with (60) and (64) and the
property af|z(t)]) < V(z(t)) = v(t), using (70), we arrive at
(59). Q.E.D.

Errata for page 1521

0. Applying (73) to this property yields
taAt
E[W (ta A 8)] <W(0) —E { / a(W(T))dT}
0

+ [Catrmar,

where o € /. The remainder of the proof proceeds in the same
way as the proof of Theorem 2 with Lemma 1 and A — co.
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The components w; of w € RS are again mutually indepen-
dent standard Wiener processes. The (k,[)-component of ©
represents the intensity describing the influence of the [-th
component of w(t) on x(t) through the %-th column of /(). In
fact, the deterministic function ©(+)O(¢)T is the infinitesimal
variance matrix of the S-dimensional stochastic process repre-
sented by O(t)dw in (10). We assume f(0) = 0. It is stressed
that for (10), we do not assume /(0) = 0. This paper employs
the notion of noise-to-state stability for system (10) introduced
in [18].

IF Definition 5: System (10) is said to be noise-to-state
stable (NSS) if for each e € (0,1), there exist a class KL
function 3 and a class K function ~ such that

]P{\I(z‘ﬂ < B(|z(0)].t) +~ ( Sl[lupt] |O (reT(r )‘ )}

>1—e6 VYteRy, z(0)eRM\{0}. (D

NSS defines robustness with respect to the noise variance
O(t)O(t)T. This idea contrasts with the one employed by
another type of ISS proposed and investigated in [28], [31]
where 7 in (5) is a random variable in addition to the Wiener
process w. As we did for (5), we define the following two
properties for system (10):

22r Definition 6: System (10) is said to be integral noise-to-
state stable (INSS) if for each e € (0, 1), there exists a class KL
function 53, a class K function ;¢ and a class K, function x
such that

t

P < x (Jet)]) < B(|z(0)].t) + //1 (|(—)(7‘)(—)T(T)|F) dr
>1—¢ VteRf.l( cRY\ {0}. (12

S Definition 7: System (10) is said to be quasi-integral
noise-to-state stable (quasi-iNSS) if there exists a constant 2 >
0 satisfying the following: for each e € (0. 1), there exist a class
KL function 3, class K functions /. 7, and class K, functions
. 7 such that

t

P (20 < B0+ [ 1 (0167 (7)) dr
>1—e Vroeth( e RV \ {0} (13)

sup |(—)(7)(—)T
7€[0,00)

e <R = (11). (14)

In Definitions 5-7, we do not require the influence of the
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Therefore, the function V' satisfying (18) establishes not only
quasi-iISS but also ISS of the stochastic system (5) in both cases
of a € ICOc and (19). In the deterministic case, the function
p=a"loro (resp. p=a~'o(Id+w)oo) for a constant
T > l (resp a commuous tunctlon w: ]R+ — ]R+ saustym(7

IV. LYAPUNOV CHARACTERIZATIONS
For any given C? function V : z € RN — V(z) € R4, the
infinitesimal generator £ associated with systems (3), (5) and
(10) is defined as

oV 02V
cv=p Ly QThT’ hQ (15)
dx 2
where
Q=I for (3) and (5)
Q=0(t) for (10). (16)
Here, the symbol I denotes the identity matrix of size S x S.

A. Robustness With Respect to Deterministic Disturbance

For ISS, the following characterization is available, which is
parallel to the deterministic case [27].

Proposition 1: Consider (5). If there exist a positive definite
and radially unbounded C? function V : RN — R, and con-
tinuous functions p € K and 7 € P such that the implication

Viz)Zp(r)) = LV < —p(V(z)) (17)

holds for all € RY and » € RM then system (5) is ISS in
probability.

As indicated in [29], the proof of Proposition 1 essentially
follows an adaptation of the one given in [ 18] which is demon-
strated in detail in [20]. Note that applying [17. Theorem 5.1]
or [21, Theorem 2.4 in Section 4.2] to the proof of
[18, Theorem 3.3] allows us to replace € K with € P. A
related discussion on Proposition 1 is given in Appendix H.
The main developments in this subsection are the following two
theorems establishing quasi-iISS and iISS in probability.

Theorem 1: Consider (5). If there exist a positive definite and
radially unbounded C? function V : RN — R, and continu-
ous functions o € K and o € K such that

LV < —a(V(x))+o () (18)
holds forall € RN and » € RM, then system (5) is quasi-iSS
in probability.

In [20], [33], [34]. the function « in (18) is assumed to be of
class K, in order to obtain ISS of (5). Indeed, if o € K, holds,
inequality (17) is satisfied for any 7 > 1 with p=a"to70 €
K and 7= (1—1/7)a € K. As in the deterministic case, we
can relax a € K, into

lim a(s) > lim o(s) (19)
S—00

s—00

in establishing ISS of (5 from (18). This fact can be verified
by the choice p = a™" o (Id + w) o 0 € K yielding (17) with
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tinuous functions p € K and 7 € P such that the implication
V(z) 2 p(007[p) = LV < —n(V(z)) (24

holds for all - € RN, then system (10) is NSS.
A function V satisfying the conditions of Proposition 2 is
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[ ] L [ [ ]
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generator of the transformed (scaled, ﬁliéred) Lyz;pliliov func-
tion V; associated with the x;-subsystem is computed as

e 57 (1) o 17 (1) o
GZ(FS (‘/s i(23— z))‘*”"z“"l‘))}

1, (VAT [0V,
N Vi - ) 3
+2A,(‘z(u))T1{/u (d) (5 )/} 30)
from (15) with @ =1
92V, N d?V;
Tr {IT o /zi} =\ ("’i(Al'i))Tl‘{hz =l }

+ X, (Vi(zs)) 11{/1,; (0”> (0“ hi

SIn this paper, “with respect to the input 23_;” means that the remaining
input r; is supposed to be zero. In addition, when we refer to a stability
property of an individual x;-subsystem, the 2;-subsystem is disconnected from

1514

holds, interconnection (26), (27) is iISS in probability.
(iii) If there exist D; > 0,7 = 1, 2, such that

Vi
(0_1”1(11)> hi(z)=0, Vrze{ze RN . Vi(x;) > D; }
(37)
D; < li_l>n o5_; 0 az—i(s) (38)

holds, interconnection (26), (27) is iISS in probability.
(iv) If &y and ag are of class K, interconnection (26), (27)
is ISS in probability.
For notational simplicity, the above theorem employed the

{lim a;(s) = ocor lim o3_;(s)ri(1) < oc} ,i=1.2
S—00 S—00

(41
is satisfied, the following hold true:

(i) Interconnection (26), (27) is quasi-iISS in probability.

(i) If there exists D > 0 such that (36) holds, interconnec-

tion (26), (27) is iISS in probability.

(iii) If there exist D; > 0, ¢ = 1, 2, such that (37) and (38)

hold, interconnection (26), (27) is iISS in probability.

(iv) If oy and ag are of class K. interconnection (26), (27)

is ISS in probability.

If £V and LV are bounded from above by functions match-
ing each other, we can get rid of (33) in Theorem 5, and ¢ > 2
in (34) can be relaxed into ¢ > 1 as stated below.

Corollary 2: Consider (5) consisting of (26) and (27). Sup-

L4 111 {0V 1UL UOLAULISIIIE SLAULIILY UL IICIVULIICULCU 5 Y SUULLD.

Theorem 5: Consider (5) consisting of (26) and (27). Sup-
pose that there exist &, ap € K and ¢ > 2 such that

l‘73 i(s)

)

ai(s) < ails) — G
Gy ocoyody O((Tz( ) <s, VseRL (34)

Ti(s), VseRgy i=1,2 (33)

hold. Then interconnection (26), (27) is GAS in probability for
r = 0. Moreover, if

{lgn a;(s)=00 or hm o3_;(s )h,(l)<oo}4 i=1,2 (35)

is satisfied, the following hold true:

(i) Interconnection (26). (27) is quasi-iISS in probability.
(ii) If there exists D > 0 such that

(‘;" I,)) (x)=0, ¥]z|>D,i=12 (36)
ar.

SIf h;(2) is bounded in 23_;, T;(s) < oo is guaranteed for all s € R4. In

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 61, NO. 6, JUNE 2016

Then (i), (ii). (iii), and (iv) in Corollary 1 hold true.

At the price of the matching nonlinearity condition (42)
that is quite restrictive for nonlinear systems. the proof
of Corollary 2 becomes considerably simpler than that of
Theorem 5. In fact, the matching nonlinearity assumption al-
lows us to use constant \; and A2 in (29), i.e., linear F; and
F5. This idea employed by Corollary 2 has been used as a
popular quick recipe in the literature for tackling intercon-
nections of stochastic systems (e.g. [34] and [35]).” The use
of a constant \; which amounts to a linear transformation F;
simply allows us to avoid the stochastic degradation in (30). For
deterministic systems, getting rid of the matching nonlinearity

CULILILULIS \00 ) GG \FU) A1 L HUULUILL U GIIG CULULALY 1 GHUW uo
to get rid of the above two deficiencies in [33]. and precisely
establish ISS described in Definition 2.

B. Robustness With Respect to Stochastic Disturbance

This subsection deals with system (10) consists of

dry = fi(zy, z2)dt 4+ hy(2)01(t)dwy (44)
dxg = fo(xy, z2)dt 4+ ho(z)O2(t)dws (45)

where w;(t) is the S;-dimensional vector of mutually indepen-
dent standard Wiener processes for each 7 = 1, 2. As in (10),
we assume f;(0,0) = 0, and the (k. [)-component of the matrix
O;(t) € RS> denotes the intensity describing the influence
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of the [-th component of w; (¢) on z;(t) through the k-th column
of h;(«). The matrix O(¢) € RS* is obtained as

o) = [(—)10(1) (-)20(1)] '

It is stressed that in contrast to (26) and (27). we do not
assume /;(0) = 0 for (44) and (45). The following is assumed
throughout this subsection.

Assumption 2: For each i = 1. 2, there exist a positive
definite and radially unbounded C? function V; : RN: — R,
a C! function o;,0; € K and a C° function w; € KU {0}
such that

LV; < —a; (Vi(a)) + 05 (Vazi(ws—:)) +wi (|©:07|r)
(46)

holds for all z; € RN:, a5 ; € RNs—i and all ©; € R%*5:,

where w; is the zero function. i.e.. w; = 0 if h; = 0. Here,

1518
[ [ ]
[ [ ]
[ [

From (18) and property (23) in (73) it also follows that:

V(t)>D :)%W(r) <—a(W@®)+o(r@)]). (75

1520

Proposition 1 with » = 0 establishes GAS from (92). Next,
assume that (35) holds in addition to a1,a2 € K and ¢ > 2
satisfying (33) and (34). We again use (89) for V' in (29).

(i) LetT € (2, ¢). The technique in (90) allows one to prove

Thus, Theorems 1 completes the proof.

(ii) Define D =@(D). Then from |z > @ ' (V (x)) it fol-
lows that V() > D implies || > D. Thus, under the
assumption (36), replacing D with D in Theorem 2
proves the claim with (18) for (97) and (98).

(iii) Suppose that there exist Dy, Dy > 0 satisfying (37) and
(38) for i = 1. 2. Since (33) means a(s) < a(s) fors €
Ry. property (34) implies af o coy 0 af o coz(s) < s
for all s € Ry. Thus, the condition (38) guarantees the
existence of D; € [D;,00),7 = 1,2,and p > 1 such that

—ai(Dy) + poi(Dsi) <0, i=1.2. 99)

Let W(t) = V(x(t)). Yi(t) = (t)). D; = Fi(Dy)

and Wi(t) = Fi(Vi(xi(1))). whcreF s) = [3 Ni(r)dr.

From (18) and (37) it follows that:

Wi(t)>D;.i=1, 2:)—n() —a (W(t))+a (|r(t)])
(100)

is satisfied, then the following hold true:

(i) If

o)

lim sup
s—00 az( )

o Zaa ()
1 bllp )

s—00 (9

H;(s) <o0,i=1,2 (51)

:q|

i(s) <oo,i=1,2 (52)

hold, then interconnection (44), (45) is quasi-iNSS.

(i) If there exists D > 0 such that (36) is satisfied, intercon-
nection (44), (45) is iNSS.

(iii) If there exist D; > 0, ¢ = 1. 2. such that (37) and (38)
are satisfied, interconnection (44), (45) is iNSS.

(V) If oy and a9 are of class K and (51) and (52) hold,
interconnection (44), (45) is NSS.

The difference from quasi-iNSS, iNSS and NSS appears in
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[ ] [ ]
[ ] [ ]
[ ] [ ]
¢ (h(m)s) <a(s), Vsel[0,m] (80)

forall m € Ry. Let m(1') = D(V(2(0)).T) forall T € R..
With the help of (78) and (80). applying Jensen’s inequality to
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for « € K and o € KU {0} given in (97) and (98).
Let B={se€R2:s; < D;;i=12} and B° =R2 \
B. Define a sequences of times {{j}jzo as done in the
proof of Theorem 2. By definition

° °
o °
b °
(p/(p — 1))rilmi € KU {0} and obtain
LW; <5 ([ri(#)]) (103)

by dividing the evaluation of the above LW, into
the two cases, o;(Yi(t)) > (p/(p — 1))ri(|ri(t)]) and
ax(Vi(1) < (o/(p— DI Leta, 2 € KU {0}
and I be

5(s) > max {7i(s) + Fa(s),0(s)}, YseRy
T(s) =5+ D1+ Da, Z(t) = /5 (jr(7)]) dr.

0

and define D:R2 — Ry by D(s.t) =T(s) + Z(t)
which is continuous and non-decreasing in both s € R+
and ¢ € R+. By virtue of the continuity of trajectories,
combining (101), (102), and (103) yields

P[V(2(t) <D(V(2(0),8)] =1, VteR,.
(104)
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Recall that LV < —a (V') + o(|r|). Let t4 € Ry be the
first exit time defined as (61) for an arbitrarily given A >
0. Applying (73) and Tonelli’s Theorem to this property

yields
E[W(ta At)] <W(0) — / E[a(W(7))] dr
i
+ 7 (|r(r)])dr
/

where a € K. The remainder of the proof proceeds in
the same way as the proof of Theorem 2 with Lemma 1.
(iv) In the case of &y, a9 € Ko, We have a € K in (97).
Pick 7 > 1 and define p = o~ o 70 € K. By virtue of
(17) with 7 = (1 — 1/7)a, Proposition I establishes the

G. Proof of Theorem 6
Pick 7 > 0 and ¢ > 0 such that

l<r<e (1)805771. (106)
c
Define V : RN — R, as (29) with
®
Ais) = [-ai(s)} [oa—i(s)]?T, i=1,2 (107)
T

which are of class K and satisfy \;(s) > 0 forall s € Ry For
these functions we obtain

X(s) =2 B“} ot

[pot(8)73-s(s) + (¢ + Da(8)h_;(5)] .for ¢ > 0

claim. (108)
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