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State-Dependent Scaling Problems and Stability of
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Abstract— This paper addresses the problem of establishing
stability of nonlinear interconnected systems. This paper intro-
duces a mathematical formulation of the state-dependent scaling
problems whose solutions directly provide Lyapunov functions
proving stability properties of interconnected dissipative sys-
tems in a unified manner. Stability criteria are interpreted as
sufficient conditions for the existence of solutions to the state-
dependent scaling problems. Computing solutions to the problems
is straightforward for systems covered by classical stability
criteria. It, however, could be too difficult for systems with strong
nonlinearity. The main purpose of this paper is to demonstrate
the effectiveness beyond formal applicability by focusing on
interconnected integral input-to-state stable(iISS) systems and
input-to-state stable(ISS) systems. This paper derives small-
gain-type theorems for interconnected systems involving iISS
systems from the state-dependent scaling formulation. This paper
provides solutions and Lyapunov functions explicitly. The new
framework seamlessly generalizes the ISS small-gain theorem
and classical stability criteria such as the Lp small-gain theorem,
the passivity theorems, the circle and Popov criteria. State-
dependence of the scaling is crucial for effective treatment of
essential nonlinearities, while constants are sufficient for classical
nonlinearities.

Index Terms— Nonlinear interconnected system, dissipation,
Lyapunov function, integral input-to-state stability, input-to-state
stability. small-gain condition

I. INTRODUCTION

IN the literature of nonlinear control theory, a great deal

of effort has been put into the problem of finding useful

formulations of conditions under which interconnected sys-

tems are stable. One of significant contributions is the stability

theory developed in [1], which unifies previously known

stability criteria and provides Lyapunov versions of input-

output stability results such as the L2 small-gain theorem, the

passivity theorems, and the circle and Popov criteria. Another

major development which presently plays an important role in

nonlinear control analysis and design is the ISS small-gain the-

orem also known as the nonlinear small-gain theorem[2], [3].

A small-gain theorem which brought about the ISS small-gain

theorem was originally formulated by Hill[4], and Mareels and

Hill[5], and that was extended in the ISS framework by Jiang

et al.[2] which was also further generalized by Teel[3]. The

effectiveness of the ISS small-gain theorem is evident when

systems have essential nonlinearities described by the input-to-

state stable(ISS) property[6]. It is, however, known that there

are systems for which ISS is too strong requirement[7], [8].
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One has yet to develop a stability theory which encompasses

much broader classes of interconnected systems. For nonlinear

systems, universal applicability and effectiveness do not come

together automatically. This is a reason why there are two

directions of the research. One direction pursues problem-

specific techniques focusing on particularity of individual

nonlinearities. Some people consider them too heuristic and

impractical even when specialized tricks are effective. The

other direction seeks general techniques that are applicable

to many cases in a unified way. The generality sometimes not

only excludes some strong nonlinearities of great importance,

but also renders the essential effectiveness obscure so that the

applicability is only formal. It is typical of general ‘nonlinear’

problems to have no guarantee of the existence of solutions.

We often do not know how to solve them even if solutions

exist. Naturally, this situation has brought out a quest for a

successful fusion of the two directions. From this viewpoint,

it is remarkable that the ISS small-gain theorem achieves a

balance between the universal applicability and the effective-

ness for interconnected ISS systems[9], [10], [11].

The aim of this paper is to provide a general framework

which is not limited to the settings of popular classical stability

criteria and the ISS small-gain theorem. To this end, this paper

borrows an idea from the state-dependent scaling techniques

which have been recently introduced by the author[12], [13],

[14] for constructing robust control Lyapunov functions for

some classes of systems. This paper generalizes the idea

much further. Problems of stability analysis for interconnected

dissipative systems are formulated into state-dependent scaling

problems in a unified way. This paper clarifies for the first time

the relation between the state-dependent scaling formulation

and the ISS small-gain condition[2], [3] as well as stability

criteria for dissipative systems[1]. The state-dependent scaling

problems are scalar inequalities we solve for parameters which

the author calls state-dependent scaling functions. Solutions

immediately lead to Lyapunov functions for interconnected

systems.

The state-dependent scaling approach this paper pursues

is a tool of dealing with nonlinear systems beyond classical

nonlinearities such as finite linear-gain, sector and passivity-

related systems which have been popular in textbooks of

nonlinear stability analysis. This paper is devoted mainly to

demonstration of the effectiveness much more than formal

applicability by concentrating on the interconnected system

composed of integral input-to-state stable(iISS) and ISS sys-

tems. The existence of solutions to the state-dependent scaling

problem is investigated rigorously, and explicit formulas of

the solutions are shown. New theorems of the small-gain-type

are derived. To the best of author’s knowledge, the result of
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small-gain-type theorems involving iISS systems is the first

of its kind. The class of ISS systems has been extensively

investigated and has been playing an important role[6], [15],

[9]. For instance, the fact that cascades of ISS systems are ISS

is widely used in stabilization. The ISS small-gain theorem is

also a popular tool for feedback interconnection. In contrast,

the concept of iISS has not yet been fully exploited in

analysis and design although the property of iISS by itself

has been investigated deeply[7], [8]. The iISS property covers

nonlinearities much broader than the ISS property. Indeed, the

iISS captures important characteristics essentially nonlinear

systems often have[8], and there are many practical systems

which are iISS, but not ISS. There are still few tools of making

full use of the iISS property in systems analysis and design.

For instance, stability criteria similar to the ISS small-gain

theorem have not been developed for interconnection involving

iISS systems so far.

The paper places a special emphasis on construction of Lya-

punov functions for interconnected systems. Storage functions

in the dissipative analysis[16], [1] often serve as Lyapunov

functions. The storage function is an abstract notion of energy

stored in a system. The energy increases when energy is

supplied from outside. The supply rate determines the variation

of the storage function. The idea proposed in [1] is to construct

a Lyapunov function of interconnected systems explicitly by

summing up supply rates of individual systems. On the other

hand, the ISS small-gain theorem are usually explained in

terms of trajectories of systems (in other words, input-output-

type formulation)[2], [3], [9]. Although the ISS property of

open-loop systems has been related to Lyapunov functions[17],

[18], [9], little development has been made in the construction

of Lyapunov functions for feedback systems. A notable excep-

tion is [19] which proves the equivalence between gain-type

formulation and Lyapunov-type formulation of the ISS small-

gain theorem. It, however, focuses on the equivalence rather

than in providing explicit formulas for Lyapunov functions

which are convenient for further use. In order to close the

remaining gap between the dissipative approach and the ISS

small-gain theorem, this paper comes up with an idea of sum-

ming up supply rates nonlinearly for constructing Lyapunov

functions for interconnected systems. The nonlinearly-scaled

sum of supply rates and several existing tools share a common

tool of integration to rescale storage or Lyapunov functions.

The above-mentioned papers[18], [9] exploit integrals of Lya-

punov functions for cascades of ISS systems. Mazenc and

Praly[20] address a class of nonlinear systems in feedforward

form using integral for rescaling Lyapunov functions. This

paper investigates a generalized usage of such a technique and

pursues its real potential further for new classes of systems.

Nonlinear coefficients to combine supply rates for the ISS

small-gain theorem and constant coefficients for the dissipative

approach are solutions to the state-dependent problems. Such

formulation enables us to not only explain the dissipative

approach and the ISS small-gain theorem in a unified language,

but also treat iISS systems successfully in the same framework.

This paper is organized as follows. First, Section II gives

a glimpse into this paper. Section III formulates the problem

of stability of interconnected systems in a general configu-

ration. Then, the section introduces a mathematical problem

of state-dependent scaling which is the preliminary idea of

this paper. A Lyapunov function establishing stability of the

interconnection is obtained explicitly from a solution to the

state-dependent scaling problem. For interconnected systems

covered by traditional stability criteria, such as the Lp small-

gain theorem, the passivity theorems, and the circle and Popov

criteria, solutions can be computed easily as positive constants,

and the stability criteria are simply sufficient conditions for

the existence of the solutions. For arbitrarily general systems,

formulas and existence conditions have not been available

so far. Therefore, this paper is mainly devoted to the issues

of when the solutions exist and how they can be found

for systems which are not covered by the classical stability

criteria. Section III focuses on the interconnection of iISS sys-

tems and ISS systems, and provides explicit formulas. Small-

gain-like conditions are derived as sufficient conditions for

guaranteeing the existence of solutions to the state-dependent

scaling problem. Section IV proposes an extension of the state-

dependent scaling problem to obtain less conservative stability

formulas in the presence of static systems. In Section V, the

effectiveness of the proposed approach is illustrated through

examples. Finally, conclusions are drawn in Section VI.

This paper uses the following notations. The interval [0,∞)
in the space of real numbers R is denoted by R+. Euclidean

norm of a vector in R
n of dimension n is denoted by | · |.

A function γ : R+ → R+ is said to be class K and written

as γ ∈ K if it is a continuous, strictly increasing function

satisfying γ(0) = 0. A function γ : R+ → R+ is said to be

class K∞ and written as γ ∈ K∞ if it is a class K function

satisfying limr→∞ γ(r) = ∞. We write γ ∈ P0 for a function

γ : R+ → R+ if it is a continuous function satisfying γ(0) =
0. The set of γ ∈ P0 satisfying γ(s) > 0 for all s ∈ R+ \ {0}
is denoted by γ ∈ P .

II. BIG PICTURE

The purpose of this introductory discussion is to give

the reader motivation for going through details of this paper.

For establishing stability of interconnected systems, this paper

proposes state-dependent scaling formulation applicable to

general systems which possess dissipation property. Naturally,

a question arises as to whether the state-dependent scaling

problems to be formulated are solvable practically. The an-

swer is affirmative for finite linear-gain nonlinearities, sector

and passive systems popular in nonlinear stability textbooks.

Indeed, solutions of the state-dependent scaling problems are

constants for such classes of systems, and the formulation

reduces to linear combination of supply rates. The constant

scaling (or equivalently, linear combination of supply rates)

classical stability criteria rely on fail easily in solving sta-

bility problems for strongly nonlinear systems. In order to

go beyond existing approaches, the paper will rigorously

investigate new classes of nonlinear interconnection involving

iISS subsystems, and substantiate the effectiveness of the state-

dependent scaling approach by providing affirmative answers

to the question.

Nevertheless, there are still practical systems which do not

fit in any supply rates of the iISS property and others covered
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by existing approaches. The classes of ISS and iISS systems

are described by supply rates which generalize the notion of

gain by incorporating nonlinear functions into the input and the

output. As we will show, the state-dependent scaling handles

the nonlinear variation and the mismatch of nonlinearities

between subsystems. The state-dependent scaling can also

allow us to select fictitious input and output incorporating

nonlinear variations into supply rates of the passive type. There

are interconnected systems whose stability can be established

by exploiting passivity, gain and their nonlinear variations at

the same time, although the stability cannot be established

by using any one of them alone. The state-dependent scaling

approach to be proposed in this paper is suitable for those sys-

tems since it puts passivity, gain and their nonlinear variations

into a unified formulation.

Suppose that an interconnected system consists of two

subsystems satisfying dissipation inequalities

Σ1 : V̇1(x1) ≤ −x2
1 + x3

1x
3
2 (1)

Σ2 : V̇2(x2) ≤ −x4
2 − x2x

3
1 + x2x1 (2)

for storage functions Vi(xi) = x2
i /2, i = 1, 2. The second

subsystem Σ2 is ISS since we obtain

V̇2(x2) ≤ −
1

2
x4
2 +

3

4
x4
1 +

3

4
x
4/3
1 (3)

by using Young’s inequality. On the other hand, the subsystem

Σ1 is neither ISS nor iISS. Indeed, the differential equation

ẋ1 = −x1 + x2
1x

3
2 (4)

satisfying (1) is not ISS with respect input x2 and state x1.

Furthermore, even for exponentially decaying input x2(t),
the equation (4) has solutions escaping to infinity in finite

time[27]. In the presence of the subsystem Σ2 having such a

serious finite escape time property, the dissipation inequality

(3) and stability criteria based on the gain are not helpful.

Passivity theorems cannot establish global asymptotic stability

of the interconnected system either since there are no terms in

(1) which cancel +x2x1 in (2). As we will show, if appropriate

functions λ1 and λ2 can be found, where λ1 and λ2 are

continuous functions from R+ to R+, that satisfy

λ1(V1(x1)){−x2
1 + x3

1x
3
2}

+λ2(V2(x2)){−x4
2 − x3

1x2 + x1x2}

≤ ρe(x1, x2), ∀x1 ∈ R
n1 , x2 ∈ R

n2 , (5)

for some function ρe which is continuous and strictly negative,

then the interconnection of (1) and (2) has a globally asymp-

totically stable equilibrium at the origin. The equation (5) will

be called a state-dependent scaling problem and λ1 and λ2

are scaling functions which combine supply rates of the two

subsystems. In order to have the inequality (5) satisfied, it is

not difficult too see that the positive component generated by

the cubic term x3
1 in (1) must be dominated by the negative

component generated by −x3
1 in (2). Since the other terms

do not have suitable growth order with respect to x1 and the

function x3
1x

3
2 is not sign definite, the inequality (5) is satisfied

only if

λ1(V1(x1)){x
3
1x

3
2}+ λ2(V2(x2)){−x3

1x2} = 0 (6)

holds. The solution to this equation is

λ1(V1(x1)) = 1, λ2(V2(x2)) = x2
2 (7)

Substituting this pair into the left hand side of (5), we obtain

−x2
1 + x3

1x
3
2 − x6

2 − x3
1x

3
2 + x1x

3
2 ≤ −x2

1 − x6
2 + x1x

3
2

Thus, the inequality (5) is achieved with

ρe(x1, x2) = −(x2
1 + x6

2)/2

Hence, global asymptotic stability of the equilibrium at the

origin is established for the interconnection of (1) and (2).

Although the above is only a very simple example, the

unified treatment of various properties composing dissipation

inequalities and the nonlinearity of scaling are the key to the

success.

III. STATE-DEPENDENT SCALING PROBLEM AND

SOLUTIONS

In this paper, two mathematical problems play a central role

in establishing stability properties and constructing Lyapunov

functions of nonlinear interconnected systems. This section

presents one of the two problems and explains the main idea

of the framework this paper proposes.

A. Problem Formulation

Consider the interconnected system Σ shown in Fig.1. This

paper deals with subsystems Σ1 and Σ2 of the general form

Σ1 : ẋ1 = f1(t, x1, u1, r1) (8)

Σ2 : ẋ2 = f2(t, x2, u2, r2) . (9)

These dynamic systems are connected each other through u1 =
x2 and u2 = x1. The exogenous inputs r1 ∈ R

m1 and r2 ∈
R

m2 are packed into a single vector r = [rT1 , r
T
2 ]

T ∈ R
m. The

state vector of the interconnected system Σ is x = [xT
1 , x

T
2 ]

T ∈
R

n where xi ∈ R
ni is the state of Σi. It is assumed that

f1(t, 0, 0, 0) = 0 and f2(t, 0, 0, 0) = 0 hold for all t ∈ [t0,∞),
t0 ≥ 0. The functions f1 and f2 are assumed to be piecewise

continuous in t, and locally Lipschitz in the other arguments.

These restrictions on fi are only for assuming the existence of

a unique maximal solution of the initial value problem ẋi = fi
for each ui ∈ R

pi and ri ∈ R
mi . This paper does not assume

that fi describing Σi in (8) and (9) are precisely known. They

are left unknown. Instead, we associate Σ1 and Σ2 in Fig.1

with supply rates and assume the knowledge of dissipation

inequalities as follows.

Assumption 1: There exists a C
1 function Vi : (t, xi) ∈

R+ × R
ni → R+ such that

αi(|xi|) ≤ Vi(t, xi) ≤ ᾱi(|xi|), ∀xi ∈ R
ni , t ∈ R+ (10)

holds with αi, ᾱi ∈ K∞, and

dVi

dt
≤ ρi(xi, ui, ri),

∀xi ∈ R
ni , ui ∈ R

pi , ri ∈ R
mi , t ∈ R+(11)

holds along the trajectories of the system Σ with a continuous

function ρi : (xi, ui, ri) ∈ R
ni × R

pi × R
mi → R satisfying

ρi(0, 0, 0) = 0.
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A system Σi satisfying Assumption 1 is said to be dissipa-

tive with respect to storage function Vi and supply rate ρi[16],

[1], [21].

This section formulates stability of the interconnected sys-

tem into a mathematical problem which this paper refers to as

Problem 1.

Problem 1: Given continuously differentiable functions Vi :
(t, xi) ∈ R+ × R

ni → R+ and continuous functions ρi :
(xi, xj , ri) ∈ R

ni × R
nj × R

mi → R for i = 1, 2 and j =
{1, 2} \ {i}, find continuous functions λi : s ∈ R+ → R+

satisfying

λi(s) > 0 ∀s ∈ (0,∞) (12)

lim
s→0+

λi(s) < ∞ (13)

∫ ∞

1

λi(s)ds = ∞ (14)

for i = 1, 2 such that

λ1(V1(t, x1))ρ1(x1, x2, r1) + λ2(V2(t, x2))ρ2(x2, x1, r2)

≤ ρe(x1, x2, r1, r2),

∀x1∈R
n1 , x2∈R

n2 , r1∈R
m1 , r2∈R

m2 , t∈R+ (15)

holds for some continuous function ρe : (x1, x2, r1, r2) ∈
R

n1 × R
n2 × R

m1 × R
m2 → R satisfying

ρe(x1, x2, 0, 0) < 0 , ∀(x1, x2) ∈ R
n1×R

n2 \ {(0, 0)} (16)

The following theorem motivates the above mathematical

problem.

Theorem 1: The equilibrium x = 0 of the interconnected

system Σ given by (8) and (9) is globally uniformly asymp-

totically stable for r(t) ≡ 0 if there is a solution {λ1, λ2}
to Problem 1. Furthermore, a C

1 function Vcl : (t, x) ∈
R+ × R

n → R+ defined with the solution {λ1, λ2} as

Vcl(t, x) =

∫ V1(t,x1)

0

λ1(s)ds+

∫ V2(t,x2)

0

λ2(s)ds (17)

satisfies

αcl(|x|) ≤ Vcl(t, x) ≤ ᾱcl(|x|), ∀x ∈ R
n, t ∈ R+ (18)

for some class K∞ functions αcl, ᾱcl and

dVcl

dt
≤ ρe(x, r), ∀x∈R

n, r∈R
m, t∈R+ (19)

holds along the trajectories of the system Σ.

The function defined in (17) serves as a Lyapunov function

of the interconnected system Σ. It may be worth mention-

ing that (13) is redundant mathematically since each λi is

supposed to be continuous on R+ = [0,∞). The explicit

statement may direct the readers’ attention to it.

The solutions λi to the inequality of the sum of scaled

supply rates (15) immediately lead us to Lyapunov functions

establishing the stability of the interconnected system Σ. The

parameters λ1 and λ2 scaling supply rates in (15) are functions

of the state variables x1 and x2. More precisely, they are

functions of Vi depending on xi as in (10). An extended

formulation of Problem 1 whose detailed introduction is

postponed until Section IV allows λ1 to directly depend on

x1. The pair of Problem 1 and the extension(to be called

Problem 2) can be regarded as a general formulation of the

state-dependent scaling technique [12], [13], [14]. Thus, this

paper referred to Problem 1 and Problem 2 as state-dependent

scaling problems. The functions λi are referred to as state-

dependent scaling functions. Early results developed in [12],

[13], [14] were based on some special cases of Problem 1 and

Problem 2 where the supply rates are restricted to finite L2-

gain, ISS or a subset of iISS. Those papers originally referred

to 1/λi as the state-dependent scaling factors.

Solutions to the state-dependent scaling problems also es-

tablish stability properties of cascade systems under Assump-

tion 1. Indeed, if one of feedback paths u1 = x2 and u2 =
x1 is disconnected in Fig.1, the interconnection becomes a

cascade. When the path of ui is disconnected, the supply rate

ρi(xi, ui, ri) becomes ρi(xi, ri). By the cascade system Σc,

the paper means that the path of u1 = x2 is cut, which is

depicted in Fig.2.

Remark 1: When Σ1 and Σ2 are time-invariant, the conse-

quence of Theorem 1 is true even if ‘<’ in (16) is replaced by

‘≤’ on appropriate assumptions of zero-state detectability[1].

Remark 2: For supply rates ρi popular in classical stability

analysis, the state-dependent scaling formulation reduces to

well-known techniques. Classical stability criteria can be con-

sidered as sufficient conditions for the existence of solutions

to Problem 1 for finite linear-gain nonlinear systems, sector

and passivity-related systems1, and solutions can be obtained

directly from those classical techniques[22]. Indeed, the for-

mulation of the state-dependent scaling problems smoothly

extends stability criteria unified in [1] (presented in standard

textbooks such as [23], [24]) and passivity theorems discussed

in [25]. It is not difficult to see that all stability theorems based

on the early works on interconnected dissipative systems[16],

[1], [21] are explained by ‘constant’ parameters λ1 and λ2,

namely, the state-dependent scaling problems are in the form

of

λ1ρ1(x1, x2) + λ2ρ2(x2, x1) ≤ ρe(x) .

Thus, the Lp small-gain theorem, the passivity theorems,

the Popov and circle criteria, are proved by using linear

combinations of supply rates. By contrast, the inequality (15)

of Problem 1 is not a linear combination of supply rates.

The parameters λ1 and λ2 are allowed to be functions. The

exploitation of state-dependence or nonlinearities in those pa-

rameters is naturally vital for dealing with strong nonlinearities

which are not covered by the classical stability criteria.

Remark 3: The use of integral in Lyapunov functions can

be found in existing papers. This paper investigates a gen-

eralized usage and exploits the potential of the technique

further. In [18], [9], given a system, the integral is introduced

for changing a supply rate into a desirable one and applied

elegantly to stability of cascade systems. The formulation

proposed in this paper aims at exploiting integrands flexibly

to obtain stability of general interconnected systems directly

from given supply rates without transformation into particular

forms. Mazenc and Praly[20] also deals with a class of

1The relation between Problem 1 and the stability involving static subsys-
tems is discussed in Section IV.
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Σ1 : ẋ1=f1(t, x1,u1, r1)

Σ2 : ẋ2=f2(t, x2,u2, r2)

✛

✲

✛

✲

x2

x1
r1

r2

u1

u2

Fig. 1. Feedback interconnected system Σ

Σ1 : ẋ1=f1(t, x1,u1, r1)

Σ2 : ẋ2=f2(t, x2,u2, r2)

✛

✲

✛

✲

✲ x2

x1
r1

r2

u1 ≡ 0

u2

Fig. 2. Cascade system Σc

feedforward systems using Lyapunov functions with integral

scalings. This paper suggests that the use of those integral

Lyapunov functions is regarded as a restricted subset of a

broader problem of Problem 1, which is generalized down

to the state-dependent scaling formulation.

The state-dependent scaling problem is directly related to

construction of Lyapunov functions. The formulation only

requires systems to be dissipative, so that it covers a broader

class of systems than classically popular stability criteria[1],

[23], [24]. This subsection has not mentioned how easy or

difficult it is to find solutions to state-dependent scaling

problems for systems which are not covered by traditional

supply rates[1], [23], [24], [25]. The state-dependent scaling

problem is jointly affine in the scaling functions λ1 and λ2.

This affine property should be helpful in calculating solutions,

which is the main issue investigated in the remaining part of

this section.

B. Supply Rates of iISS and ISS Systems

The rest of this section aims to show explicit solutions to

the state-dependent scaling problem for supply rates charac-

terizing stronger nonlinearities than traditional ones. For this

purpose, this paper focuses on iISS and ISS types of supply

rates. Concepts of iISS and ISS properties were introduced by

Sontag[6], [7], and the class of iISS systems is broader and

includes stronger nonlinearities than the class of ISS systems.

In subsequent subsections, we derive small-gain rules as

conditions guaranteeing the existence of solutions to Problem

1 for iISS and ISS properties. It is the first formulation of

its type to address stability of interconnection involving iISS

systems. The ISS small-gain condition[2], [3] is explained as

a special case dealing with interconnection of ISS systems.

In order to concentrate on ISS and iISS properties[6], [7],

we assume that a supply rate function of the form

ρi(xi, ui, ri) = −αi(|xi|) + σi(|ui|) + σri(|ri|) (20)

is given for each Σi, i = 1, 2. In the case that the second input

ri is null, the function σri vanishes. As we did in the previous

subsection, it is assumed that αi, σi ,σri ∈ P0 and αi, ᾱi ∈

K∞ satisfying Assumption 1 are known. Let us consider the

following four sets of supply rate functions.

S1 :=

{

(ρ1, ρ2) :
α1 ∈ P, σ1 ∈ K, σr1 ∈ P0

α2 ∈ P, σ2 ∈ K, σr2 ∈ P0

}

(21)

S2 :=

{

(ρ1, ρ2) :
α1 ∈ K\K∞, σ1 ∈ K, σr1 ∈ P0

α2 ∈ P, σ2 ∈ K, σr2 ∈ P0

}

(22)

S3 :=

{

(ρ1, ρ2) :
α1 ∈ K∞, σ1 ∈ K, σr1 ∈ P0

α2 ∈ P, σ2 ∈ K, σr2 ∈ P0

}

(23)

S4 :=

{

(ρ1, ρ2) :
α1 ∈ K∞, σ1 ∈ K, σr1 ∈ P0

α2 ∈ K∞, σ2 ∈ K, σr2 ∈ P0

}

.(24)

These sets have relationship of

S2 ⊂ S1, S4 ⊂ S3 ⊂ S1, S2 ∩ S3 = ∅ (25)

which is illustrated by Fig.3. The implication of equation

numbers in parentheses is given in this section later on.

A system theoretic explanation of the sets Si, i = 1, ..., 4
of supply rates can be given in terms of ISS and iISS

properties[6], [7] for the system Σi satisfying Assumption

1. The system Σi is said to be iISS with respect to input

(ui, ri) and state xi if αi ∈ P and σi, σri ∈ K hold. The

function Vi(t, xi) is called a C
1 iISS Lyapunov function[7],

[8]. If αi is additionally a class K∞ function, the system

Σi is said to be ISS with respect to input (ui, ri) and state

xi, and the function Vi(t, xi) is called a C
1 ISS Lyapunov

function[17]. The trajectory-based definition of ISS and iISS

may be seen more often than the Lyapunov-based definition

this paper adopts. The two types of definition are equivalent in

the sense that the existence of ISS (iISS) Lyapunov functions

is necessary and sufficient for ISS (iISS, respectively)[17],

[7]. It is clear from the definition that ISS implies iISS. The

converse is not true. The set S4 corresponds to interconnection

of two ISS systems, while S1 corresponds to interconnection

of two iISS systems. Supply rates belonging to S3 describe

interconnection of an ISS system and an iISS system. The set

S2 represents the set of supply rates with which the system

Σ1 may be ISS(see Remark 4), while Σ2 is only supposed

to be iISS. Note that, if the function αi is not restricted to

P \ K, there is a possibility that the system Σi is ISS. In

contrast to S3, even in the case that Σ1 is ISS, the situation

of (ρ1, ρ2) ∈ S2 indicates that the function V1 achieving

Assumption 1 with α1 ∈ K∞ is not available information.

Remark 4: It can be verified by the definition of ISS

Lyapunov functions in [17] that a given triplet of {αi ∈
K\K∞, σi ∈ K, σri ∈ P0} accompanied by an iISS Lyapunov

function satisfying

lim sup
s→∞

{σi(s) + σri(s)} ≤ lim
s→∞

αi(s) (26)

guarantees the system Σi to allow the existence of another

triplet {αi ∈ K∞, σi ∈ K, σri ∈ P0} accompanied by another

ISS Lyapunov function. Thus, even in the case of αi ∈ K\K∞,

the system Σi is ISS with respect to input (ui, ri) and state

xi if (26) holds.
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S1

(47) & (48)

S3

(27)

S4

(60)

S2

(27) &(35)

&
{(36)or (37)}

Fig. 3. Sets of supply rates and sufficient conditions for iISS and ISS

C. Feedback Connection of iISS and ISS Systems

We obtain the following theorem for interconnection of iISS

and ISS systems.

Theorem 2: Suppose that supply rate functions (ρ1, ρ2) ∈
S3 are given. If there exist ci > 1, i = 1, 2 and k > 0 such

that

max
w∈[0,s]

[c2σ2 ◦ α
−1
1 ◦ ᾱ1 ◦ α

−1
1 ◦ c1σ1(w)]

k

σ1(w)

≤
[α2 ◦ ᾱ

−1
2 ◦ α2(s)]

k

σ1(s)
, ∀s∈R+(27)

is satisfied, the following hold.

(i) Problem 1 is solvable with respect to a continuous

function ρe(x, r) of the form

ρe(x, r) = −αcl(|x|) + σcl(|r|), αcl∈K, σcl∈P0 . (28)

(ii) In the case of α2 ∈ K, a solution to Problem 1 with

respect to (28) is given by

λ1(s) = max
w∈[0,s]

νc1c
q
2δ

q

q+1
[σ2 ◦ α

−1
1 (w)]q

α1 ◦ ᾱ
−1
1 (w)

(29)

λ2(s) = νq[δ
1

q+1α2 ◦ ᾱ
−1
2 (s)]q−1 (30)

where ν, δ and q are any constants satisfying

ν > 0, 1 > δ > 0 (31)

cq2 > [δ(c1 − 1)]−1, q ≥ k, q > 1 . (32)

(iii) In the case of α2 6∈ K, there exists α̂2 ∈ K such that

α̂2(s) ≤ α2(s) (33)

max
w∈[0,s]

[c2σ2 ◦ α
−1
1 ◦ ᾱ1 ◦ α

−1
1 ◦ c1σ1(w)]

k

σ1(w)

≤
[α̂2 ◦ ᾱ

−1
2 ◦ α2(s)]

k

σ1(s)
, ∀s∈R+ (34)

hold, and a solution to Problem 1 is the same as (ii)

except that α2 is replaced by α̂2.

It is stressed that there always exist ν, δ and q fulfilling

(31) and (32). It is required implicitly by (27) that the left

hand side of (27) is finite at w = 0. It is due to the non-

decreasing property of maximization and the fact that the right

hand side of (27) takes finite value at all s ∈ (0,∞). The

function λ1(s) given in (29) satisfies lims→0+ λ1(s) < ∞
since lims→0+ [σ2 ◦ α

−1
1 (s)]k/[α1 ◦ ᾱ

−1
1 (s)] < ∞ is implied

by (27).

The following theorem explains that the condition (27) is

still applicable to S2 covering a different type of supply rate

when α−1
1 ◦ c1σ1(s) makes sense.

Theorem 3: Suppose that supply rate functions (ρ1, ρ2) ∈
S2 are given. Assume that

lim
s→∞

σ1(s) < lim
s→∞

α1(s) (35)

holds, and there exist ci > 1, i = 1, 2 and k > 0 such that (27)

is satisfied. Then, the statements (i), (ii) and (iii) in Theorem

2 are true if either of

c1 lim sup
s→∞

σr1(s) < (1− δ
1

q+1 )(c1 − 1) lim
s→∞

α1(s)(36)

lim
s→∞

σ2(s) < ∞ (37)

is satisfied.

The inverse α−1
1 denotes a function fulfilling α−1

1 ◦α1(s) =
s for all s ∈ R+ although the domain of α−1

1 is not the entire

R+. Note that c1 lims→∞ σ1(s) ≤ lims→∞ α1(s) is required

by (27). The condition (35) ensures the existence of c1 > 1
satisfying the requirement.

Calculations to check (27) can be made easier. The condi-

tion (27) can be replaced with either the pair of (38) and (39)

or the pair of (43) and (39) in the following sense.

Lemma 1: Suppose that (ρ1, ρ2) ∈ S2 ∪ S3.

(i) The pair of conditions

[α2 ◦ ᾱ
−1
2 (s)]k

σ1 ◦ α
−1
2 (s)

is non-decreasing (38)

c2σ2 ◦ α
−1
1 ◦ ᾱ1 ◦ α

−1
1 ◦ c1σ1(s) ≤ α2 ◦ ᾱ

−1
2 ◦ α2(s),

∀s ∈ R+ (39)

for a constant k > 0 implies (27). Conversely, if a

constant k > 0 satisfies (27), there exists α̂2 ∈ K
satisfying

α̂2(s) ≤ α2(s), ∀s ∈ R+ (40)

[α̂2 ◦ ᾱ
−1
2 (s)]k

σ1 ◦ α
−1
2 (s)

is non-decreasing (41)

c2σ2 ◦ α
−1
1 ◦ ᾱ1 ◦ α

−1
1 ◦ c1σ1(s) ≤ α̂2 ◦ ᾱ

−1
2 ◦ α2(s),

∀s ∈ R+ . (42)

(ii) The pair of conditions

[σ2 ◦ α
−1
1 ◦ ᾱ1 ◦ α

−1
1 ◦ c1σ1(s)]

k

σ1(s)
is non-decreasing (43)

and (39) for a constant k > 0 implies (27). Conversely,

if a constant k > 0 satisfies (27), there exists σ̂2 ∈ K
satisfying

σ2(s) ≤ σ̂2(s), ∀s ∈ R+ (44)

[σ̂2 ◦ α
−1
1 ◦ ᾱ1 ◦ α

−1
1 ◦ c1σ1(s)]

k

σ1(s)
is non-decreasing(45)

c2σ̂2 ◦ α
−1
1 ◦ ᾱ1 ◦ α

−1
1 ◦ c1σ1(s) ≤ α2 ◦ ᾱ

−1
2 ◦ α2(s),

∀s ∈ R+ . (46)

The property (35) implies that the system Σ1 is ISS with

respect to input u1 and state x1 although α1 is not a class K∞

function. For a system Σ1 without the exogenous signal r1, the

condition (35) guarantees the existence of a C
1 ISS Lyapunov
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function neglecting r1 for another supply rate composed of a

new pair {α1 ∈ K∞, σ1 ∈ K}[17]. It should be stressed that

the condition (35) does not ensure the ISS property of Σ1 with

respect to input r1.

The criterion (27) is by no means applicable if α1 does not

belong to K. When we know α1 ∈ P only, we need to consult

the following theorem which provides a criterion of (47) and

(48) accepting supply rates in the form of iISS.

Theorem 4: Suppose that supply rate functions (ρ1, ρ2) ∈
S1 are given. If there exist ci > 0, i = 1, 2 and k > 0 such

that

[σ2(α
−1
1 (s))]k ≤ c1α1(ᾱ

−1
1 (s))

c2σ1(α
−1
2 (s)) ≤ [α2(ᾱ

−1
2 (s))]k

}

∀s ∈ R+ (47)

c1 < c2 (48)

are satisfied, the following hold.

(i) Problem 1 is solvable with respect to a continuous

function ρe(x, r) of the form

ρe(x, r) = −αcl(|x|) + σcl(|r|), αcl∈P, σcl∈P0 . (49)

(ii) In the case of k ≥ 1 and α2 ∈ K, a solution to Problem

1 with respect to (49) is given by

λ1 =
νc1
δ2

, λ2(s) = νk[δα2 ◦ ᾱ
−1
2 (s)]k−1 (50)

where ν is any positive constant, and

δ =

(

c1
c2

)
1

k+2

. (51)

(iii) In the case of k < 1 and α1 ∈ K, a solution to Problem

1 with respect to (49) is given by

λ1(s) =
ν

k
[δα1 ◦ ᾱ

−1
1 (s)](1−k)/k, λ2 =

ν

δ2c
1/k
2

(52)

where ν is any positive constant, and

δ =

(

c1
c2

)
1

1+2k

. (53)

(iv) In the case of αi 6∈ K, there exist α̂i ∈ K, i = 1, 2 such

that

α̂i(s) ≤ αi(s), ∀s ∈ R+, i = 1, 2 (54)

[σ2(α
−1
1 (s))]k ≤ c1α̂1(ᾱ

−1
1 (s))

c2σ1(α
−1
2 (s)) ≤ [α̂2(ᾱ

−1
2 (s))]k

}

∀s ∈ R+(55)

hold, and a solution to Problem 1 is the same as (ii) and

(iii) except that αi is replaced by α̂i.

Theorem 4 has advantages over Theorem 2 and Theorem 3

in the following points.

• Theorem 4 does not require each system Σi to be ISS

with respect to the external signal ri.
• Theorem 4 is applicable directly to a given pair of

α1, α2 ∈ P \ K∞.

The conditions in (47) necessitate lim infs→∞ α1(s) > 0 and

lim infs→∞ α2(s) > 0 since σ1 and σ2 are class K.

Remark 5: If both the two systems Σi, i = 1, 2 satisfy

ri(t) ≡ 0, the pair of (47)-(48) implies that at least one system

Σi of Σ1 and Σ2 is ISS with respect to input ui and state

xi. In other words, the pair of (47)-(48) yields the following

property.

lim sup
s→∞

αj(s) < lim
s→∞

σj(s) ⇒

lim sup
s→∞

αi(s) > lim
s→∞

σi(s), i 6= j . (56)

Therefore, by virtue of (iv) in Theorem 4, at least one of Σ1

and Σ2 needs to be ISS with respect to input ui and state xi

under the assumption of ri(t) ≡ 0 although αi ∈ P \K∞ may

hold. To see (56), consider the supply rate (20) with αi ∈
P \ K∞ for i = 1, 2. Two conditions in (47) lead to

[

σ2(α
−1
1 (s))

α2(ᾱ
−1
2 (s))

]k

≤
c1α1(ᾱ

−1
1 (s))

c2σ1(α
−1
2 (s))

, ∀s ∈ R+ \ {0} .

From (48), we obtain

lim inf
s→∞

[

σ2(α
−1
1 (s))

α2(ᾱ
−1
2 (s))

]k

≤ lim sup
s→∞

α1(ᾱ
−1
1 (s))

σ1(α
−1
2 (s))

(57)

for k > 0. Since limiting values of σ1 and σ2 toward ∞ are

guaranteed to be finite by (47)-(48) and αi ∈ P \ K∞, the

claim (56) follows. The requirement of (56) is natural in view

of ‘small gain’ for the stability of the interconnection, and it

can be intuitively explained as follows. Suppose that neither of

the iISS systems Σ1 and Σ2 is ISS for ri(t) ≡ 0. Then, there

are no iISS Lyapunov functions whose supply rates satisfy

αi(∞) ≥ σi(∞). Thus, in the absence of ri, iISS Lyapunov

functions V1(x1) and V2(x2) given arbitrarily satisfy

dVi(xi)

dt
≤ −αi(ᾱ

−1
i (Vi(xi)) + σi(α

−1
j (Vj(xj)) (58)

for i, j ∈ {1, 2}, i 6= j along the trajectories of Σi, and

α1(∞) < σ1(∞), α2(∞) < σ2(∞) . (59)

Due to (59), there exist sufficiently large l1, l2 > 0 such that

α1(∞) < σ1(α
−1
2 (l2)) and α2(∞) < σ2(α

−1
1 (l1)) hold. We

have dVi(xi)/dt ≥ 0 for xi ∈ Ui(li) = {xi ∈ R
ni : Vi(xi) ≥

li} if we can assume that the pair {αi, σi} is selected such that

the gap in the inequality (58) is sufficiently small in Ui(li).
Hence, the simultaneous property (59) contradicts the global

asymptotic stability of x = 0.

Remark 6: According to Remark 4, even in the case that

Theorem 2 does not cover an original triplet {αi, σi, σri}
which Theorem 4 does, there may exist a transformed triplet

{αi, σi, σri} accepted by Theorem 2. The process of trans-

formation of supply rates, however, not only involves extra

manipulation requiring users to have special knowledge, but

also often causes conservatism in dissipation inequalities.

Combining theorems and a lemma in this subsection, we ar-

rive at the following corollary which establishes iISS property

of the feedback interconnection of iISS and ISS systems.

Corollary 1: The interconnected system Σ is iISS with

respect to input r and state x if at least one of the following

is satisfied.

(i) (ρ1, ρ2) ∈ S1. There exist ci > 0, i = 1, 2 and k > 0
such that (47) and (48) hold.

(ii) (ρ1, ρ2) ∈ S2. The inequality (35) and one of (36) and

(37) are satisfied. There exist ci > 1, i = 1, 2 and k > 0
such that (39) and at least one of (38) and (43) hold.
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(iii) (ρ1, ρ2) ∈ S3. There exist ci > 1, i = 1, 2 and k > 0
such that (39) and at least one of (38) and (43) hold.

Remark 7: If we replace |xi| by Vi(xi) in the supply rate

(20), the functions αi and ᾱi disappear at all places in this

section. The calculation to check the existence conditions is

easier in this case. There is a trade-off between convenience

in checking an existence condition and selecting a dissipative

inequality. The use of Vi(xi) in the supply rate may not be

appropriate in many cases.

Remark 8: The conditions (27), (39) and (47) are monotone

in ci, so that c1 and c2 can be obtained easily in a bisection

manner if they exist. The computation of composite mappings

is also straightforward. The evaluation of the inequality sign in

(27), (39) and (47) by hand would be hard when complicated

functions are involved. However, since every function is a

scalar-valued continuous function of a single scalar variable,

the inequality sign can be always checked very easily by

numerical computation reliably. It is worth noting that λ1 and

λ2 can be obtained explicitly in an analytical form even when

the existence conditions are checked numerically. Analytical

evaluation of the existence conditions is also possible in many

cases with the help of standard computer software of symbolic

manipulation. Finally, calculation of inverse functions by hand

would be too complicated when difficult functions are chosen.

Since every function needed to be inverted is an increasing

scalar-valued continuous function of a single scalar variable,

its inverse map obtained numerically is amenable to curve

fitting tools for recovering analytically explicit expression with

good approximation. In the case that one prefers a simple

expression of an inverse function by hand, the function to

be inverted can be always overbounded by another function

yielding a simple inverse if one allows some conservatism.

D. Relation between Proposed Criteria and ISS Small-Gain

Theorem

For interconnection consisting of ISS systems, solutions

to the state-dependent scaling problem are obtained in the

following form.

Theorem 5: Suppose that supply rate functions (ρ1, ρ2) ∈
S4 are given. If there exist ci > 1, i = 1, 2 such that

α−1
1 ◦ ᾱ1 ◦ α

−1
1 ◦ c1σ1 ◦ α

−1
2 ◦ ᾱ2 ◦ α

−1
2 ◦ c2σ2(s) ≤ s,

∀s ∈ R+ (60)

is satisfied, the following hold.

(i) Problem 1 is solvable with respect to a continuous

function ρe(x, r) of the form

ρe(x, r) = −αcl(|x|) + σcl(|r|),

αcl∈K∞, σcl∈P0 . (61)

(ii) In the case of σ1 ∈ K∞, a solution to Problem 1 with

respect to (61) is given by

λ1(s) =

[

ν1 ◦
1

τ1
α1 ◦ ᾱ

−1
1 (s)

]

×

[

α2 ◦ σ
−1
1 ◦

1

τ1
α1 ◦ ᾱ

−1
1 (s)

] [

1

τ1
α1 ◦ ᾱ

−1
1 (s)

]m

(62)

λ2(s) =
c2

δ(c2−1)

[

ν1 ◦ σ1◦ α
−1
2 (s)

][

σ1◦ α
−1
2 (s)

]m+1
(63)

where ν1 : s ∈ R+ → R+ is any non-decreasing

continuous function satisfying

ν1(s) > 0, ∀s ∈ (0,∞) (64)

and δ, τ1 and m are any real numbers satisfying

0 ≤ m, 0 < δ < 1, 1 < τ1 ≤ c1 (65)
τ1

[δ2(τ1−1)(c2−1)]
1

m+1

≤ c1 . (66)

(iii) In the case of σ1 6∈ K∞, there exists σ̂1 ∈ K∞ such that

σ1(s) ≤ σ̂1(s), ∀s ∈ R+ (67)

α−1
1 ◦ ᾱ1 ◦ α

−1
1 ◦ c1σ̂1 ◦ α

−1
2 ◦ ᾱ2 ◦ α

−1
2 ◦ c2σ2(s)≤s,

∀s ∈ R+ (68)

hold, and a solution to Problem 1 is the same as (ii)

except that σ1 is replaced by σ̂1.

It is stressed that there always exist m, δ, τ1 such that

(65) and (66) hold. We can revisit the ISS small-gain theorem

proposed in [2], [3] in view of Theorem 5 as follows.

Corollary 2: Assume that supply rate functions satisfy

(ρ1, ρ2) ∈ S4. If there exist ci > 1, i = 1, 2 such that (60) is

satisfied, the interconnected system Σ is ISS with respect to

input r and state x.

The ISS small-gain theorem is approached by this paper

from the direction of the state-dependent scaling problem.

Theorem 5 gives an explicit formula for a Lyapunov function

establishing the ISS property of the feedback system. In fact,

the Lyapunov function is (17) where λ1 and λ2 are given

by (62) and (63), respectively. The ISS small-gain theorem

proposed in [2], [3] is presented and proved originally by using

trajectories of systems, and it has not provided formulas useful

for constructing Lyapunov functions for design. Jiang et al.[19]

focused on the equivalence between gain formulation and

Lyapunov formulation rather than provide Lyapunov functions

explicitly. The Lyapunov function leading to the ISS small-

gain theorem is not necessarily unique, so that the existence

of a smooth Lyapunov function in a different form is proved by

[19]. This paper employs a formulation of Lyapunov functions

which allow a smooth transition to stability criteria for systems

more general than interconnection of ISS systems. The ISS

small-gain theorem is recovered as a special case.

Remark 9: In ISS analysis of open-loop and cascade sys-

tems, Lyapunov functions have been used successfully by [6],

[17], [18], [9]. This paper extends the use of the techniques to

feedback systems, and rigorously demonstrates that Lyapunov

functions in the form of [18], [9], [20] can be tailored for

proving the ISS small-gain theorem.

We can expect that stability of interconnection of iISS

systems should require more restrictive conditions than that

of ISS systems. In fact, there are reasonable relationships

between the ISS small-gain theorem and stability conditions

developed for more general systems.

Theorem 6: (i) Assume (ρ1, ρ2) ∈ S2∪S3. If there exist

c1 > 0, c2 > 0 and k > 0 such that (47)-(48) are

satisfied, there exist also c1 > 1, c2 > 1 such that (27)

holds.
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(ii) Assume (ρ1, ρ2) ∈ S4. If there exist c1 > 1, c2 > 1
and k > 0 such that (27) holds, the inequality (60) is

satisfied.

The broader the class of supply rate functions covered by a

theorem is, the more restrictive the condition for the existence

of a solution to the state-dependent problem(i.e., for stability)

is. We can fill each section of the set of supply rate functions

with a less restrictive condition as shown in Fig.3. Note that

solutions to state-dependent scaling problems are not unique.

For example, the pair {λ1, λ2} given in Theorem 4 is a

solution to the problem for supply rates considered in Theorem

2 and Theorem 5. In the same manner, the pair {λ1, λ2} given

in Theorem 2 is also a solution to Theorem 5.

E. Cascade of iISS and ISS Systems

As mentioned in Subsection III-A, solutions to Problem 1

are also able to establish stability of cascade connection of iISS

and ISS systems in the configuration of Fig.2. In addition to

(21)-(24), the sets

S♯
2 :=

{

(ρ1, ρ2) :
α1 ∈ P, σ1 ∈ K, σr1 ∈ P0

α2 ∈ K\K∞, σ2 ∈ K, σr2 ∈ P0

}

(69)

S♯
3 :=

{

(ρ1, ρ2) :
α1 ∈ P, σ1 ∈ K, σr1 ∈ P0

α2 ∈ K∞, σ2 ∈ K, σr2 ∈ P0

}

(70)

of supply rate functions are considered in this subsection.

Corollary 3: The cascade system Σc is iISS with respect to

input r and state x if one of the following is satisfied.

(i) (ρ1, ρ2) ∈ S1 holds. There exist c1 > 0 and k > 0 such

that

[σ2(α
−1
1 (s))]k ≤ c1α1(ᾱ

−1
1 (s)), ∀s ∈ R+ . (71)

(ii) (ρ1, ρ2) ∈ S2 holds. Either

lim sup
s→∞

σr1(s) < lim
s→∞

α1(s) (72)

or (37) is satisfied. There exists k > 0 such that

lim
s→0+

[σ2 ◦ α
−1
1 (s)]k

α1 ◦ ᾱ
−1
1 (s)

< ∞ . (73)

(iii) (ρ1, ρ2) ∈ S3 holds. There exists k > 0 such that (73)

holds.

(iv) (ρ1, ρ2) ∈ S♯
2 and lims→∞ σ2(s) < lims→∞ α2(s) hold.

(v) (ρ1, ρ2) ∈ S♯
3 holds.

The facts (iv) and (v) of Corollary 3 are natural extensions of

a known fact that the cascade of an ISS system and a globally

asymptotically stable system is globally asymptotically stable.

It is known that the cascade connection of ISS systems is

ISS[6]. A Lyapunov-type proof can be found in [18], [9]. The

same fact can be also extracted from Problem 1 as a special

solution.

Corollary 4: The cascade system Σc is ISS with respect to

input r and state x if (ρ1, ρ2) ∈ S4 holds.

IV. EXTENDED PROBLEM FOR STATIC SYSTEMS

This section discusses extention of the state-dependent

scaling formulation and defines a second mathematical prob-

lem. Its importance and usefulness for establishing stability

properties of interconnected systems involving static systems

is demonstrated.

A. Problem Formulation

Consider the interconnected system Σ in Fig.1 again. In this

section, we assume that Σ1 is a static system described by

Σ1 : z1 = h1(t, u1, r1) . (74)

This system is connected to the dynamic system Σ2 defined in

(9) through u2 = z1. The state vector of the overall system Σ
is x = x2 ∈ R

n, and n = n2. It is assumed that h1(t, 0, 0) = 0
holds for all t ∈ [t0,∞), t0 ≥ 0. The function h1 is assumed to

be piecewise continuous in t, and locally Lipschitz in the other

arguments. Instead of working directly with h1, we assume

we know a function ρ1(z1, u1, r1) satisfying the following

condition:

Assumption 2: The inequality

ρ1(z1, u1, r1) ≥ 0, ∀u1∈R
p2 , r1∈R

m1 , t∈R+ (75)

is satisfied with a continuous function ρ1 : (z1, u1, r1) ∈ R
p2×

R
n1 × R

m1 → R satisfying ρ1(0, 0, 0)=0.

For convenience, we call ρ1 a supply rate although energy

is never stored by any static system. For the dynamic system

Σ2, we assume that Assumption 1 is satisfied.

The problem of establishing stability of the interconnection

Σ comprising a dynamic system and a static system can be

formulated into a mathematical problem called Problem 2.

Problem 2: Given a continuously differentiable function

V2 : (t, x2) ∈ R+ × R
n2 → R+ and continuous functions

ρ1 : (z1, x2, r1) ∈ R
p2 × R

n2 × R
m1 → R and ρ2 :

(x2, z1, r2) ∈ R
n2 × R

p2 × R
m2 → R, find continuous

functions λ1 : (t, z1, x2, r1, r2) ∈ R+ × R
p2 × R

n2 × R
m1 ×

R
m2 → R+, λ2 : s ∈ R+ → R+, an increasing continuous

function ξ1 : s ∈ [0, N ] → R+ and a continuous function

ϕ1 : (z1, x2, r1) ∈ R
p2 × R

n2 × R
m1 → R+ satisfying

λ2(s) > 0 ∀s ∈ (0,∞) (76)

lim
s→0+

λ2(s) < ∞ (77)

∫ ∞

1

λ2(s)ds = ∞ (78)

ξ1(s) ≥ 0 ∀s ∈ [0, N ] (79)

ϕ1(z1, x2, r1) ≥ 0, ∀z1∈R
p2 , x2∈R

n2 , r1∈R
m1 (80)

such that

λ1(t, z1, x2, r1, r2) [−ξ1(ϕ1(z1, x2, r1))

+ξ1(ϕ1(z1, x2, r1) + ρ1(z1, x2, r1))]

+λ2(V2(t, x2))ρ2(x2, z1, r2) ≤ ρe(x2, r1, r2),

∀z1∈R
p2 , x2∈R

n2 , r1∈R
m1 , r2∈R

m2 , t∈R+ (81)

holds for some continuous function ρe : (x2, r1, r2) ∈ R
n2 ×

R
m1 × R

m2 → R satisfying

ρe(x2, 0, 0) < 0 , ∀x ∈ R
n2 \ {0} (82)

where N ∈ [0,∞] is defined by

N = sup
(z1,x2,r1)∈Rp2×Rn2×Rm1

[ϕ1(z1, x2, r1) + ρ1(z1, x2, r1))] (83)

Theorem 7: The equilibrium x = 0 of the interconnected

system Σ is globally uniformly asymptotically stable for

r(t) ≡ 0 if there is a solution {λ1, λ2, ξ1, ϕ1} to Problem
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2. Furthermore, a C
1 function Vcl : (t, x) ∈ R+ × R

n2 →
R+defined with the solution {λ1, λ2, ξ1, ϕ1} as

Vcl(t, x2) =

∫ V2(t,x2)

0

λ2(s)ds (84)

satisfies (18) for some class K∞ functions αcl, ᾱcl, and (19)

holds along the trajectories of the system Σ.

Remark 1 is applicable to (82) and Theorem 7. When ξ1(s)
is affine in s, the inequality (81) becomes

λ1ξ1 (ρ1) + λ2(V2)ρ2 ≤ ρe . (85)

The function ϕ1 disappears from (81), so that, in the case of

affine ξ1(s), a solution to Problem 2 becomes the triplet {λ1,

λ2, ξ1}. Problem 2 is milder than Problem 1. More precisely,

Problem 1 has a solution only if Problem 2 is solved with

ξ1(s) = s and p2 = n1 in the following sense.

Lemma 2: Suppose that a continuous function ρe :
(x1, x2, r1, r2) ∈ R

n1 × R
n2 × R

m1 × R
m2 → R satisfies

(16) and

sup
x1∈Rn1

ρe(x1, x2, r1, r2) < ∞, ∀x2∈R
n2 , ri∈R

mi (86)

sup
x1∈Rn1

ρe(x1, x2, 0, 0) < 0, ∀x2 ∈ R
n2 \ {0} . (87)

Then, there exists a continuous function ρ̃e : (x2, r1, r2) ∈
R

n2 × R
m1 × R

m2 → R such that

ρe(x1, x2, r1, r2) ≤ ρ̃e(x2, r1, r2), ∀xi,∈R
n1 , ri∈R

mi (88)

ρ̃e(x2, 0, 0) < 0 , ∀x2 ∈ R
n2 \ {0} . (89)

As explained in Remark 2, even in the presence of static

systems, classical stability criteria such as the Lp small-

gain theorem, the passivity theorems, criteria of Popov and

circle types [1], [23], [24], [25] do not make use of the

extension introduced by Problem 2. Indeed, due to Lemma

2, the classical criteria are explained by constant λi’s and

ξ1(s) = s which form a solution of Problem 1.

B. Interconnection of iISS and Static Systems

Consider supply rate functions in the form of

ρ1(z1, u1, r1) = −αi(|z1|) + σi(|u1|) + σr1(|r1|) (90)

ρ2(x2, u2, r2) = −αi(|x2|) + σi(|u2|) + σr2(|r2|) . (91)

It is supposed that αi, σi, σri ∈ P0 are known, but exact

information of the differential equations (74) and (9) is not

required. Define the following set of supply rate functions.

S5 :=

{

(ρ1, ρ2) :
α1 ∈ K, σ1 ∈ K, σr1 ∈ P0

α2 ∈ P, σ2 ∈ K, σr2 ∈ P0

}

. (92)

This set satisfies

S2 ⊂ S5 ⊂ S1, S4 ⊂ S3 ⊂ S5 ⊂ S1 . (93)

Theorem 8: Suppose that supply rate functions (ρ1, ρ2) ∈
S5 are given. Assume that

lim
s→∞

σ1(s) < lim
s→∞

α1(s) or α1 ∈ K∞ (94)

holds, and there exist ci > 1, i = 1, 2 such that

c2σ2 ◦ α
−1
1 ◦ c1σ1(s) ≤ α2(s), ∀s ∈ R+ (95)

is satisfied. If one of

c1 lim sup
s→∞

σr1(s) ≤ (c1 − 1) lim
s→∞

α1(s) or α1 ∈ K∞(96)

lim
s→∞

σ2(s) < ∞ (97)

is satisfied, the following hold.

(i) Problem 2 is solvable with respect to a continuous

function ρe(x, r) of the form

ρe(x2, r) = −αcl(|x2|) + σcl(|r|)),

αcl∈P, σcl∈P0 . (98)

Furthermore, αcl∈K∞ is guaranteed if α2∈K∞.

(ii) A solution to Problem 2 with respect to (98) is given by

λ1 = λ2 = ν, ϕ1(s) = α1(s) (99)

ξ1(s) = σ2 ◦ α
−1
1 (s) (100)

where ν is any positive constant. In the case of (97), the

domain of ξ1 is extended by

ξ1(s) = s− h+ lim
s→∞

σ2(s) for s ∈ [h,∞)(101)

h = lim
s→∞

α1(s) .

(iii) If σr1(s) ≡ 0 holds, the conditions (94) and (95) are

replaced by

lim
s→∞

σ1(s) ≤ lim
s→∞

α1(s) or α1 ∈ K∞ (102)

c2σ2 ◦ α
−1
1 ◦ σ1(s) ≤ α2(s), ∀s ∈ R+(103)

respectively.

The case of (ρ1, ρ2) ∈ S1 which is not covered by Theorem

8 can be dealt with by Theorem 4 due to the inclusive relation

between Problem 1 and Problem 2, i.e., Lemma 2. Note that

(47) is replaced by

[σ2(s)]
k ≤ c1α1(s), c2σ1(α

−1
2 (s)) ≤ [α2(ᾱ

−1
2 (s))]k (104)

since V1(z1) = α1(|z1|) = ᾱ1(|z1|) = |z1| can be used

fictitiously for the static system Σ1. In contrast, for S2, S3 and

S4, it is no use relying on solutions to Problem 1 although

Lemma 2 is valid. In fact, Theorem 8 not only covers S5

which is broader than S2, S3 and S4, but also provides less

conservative conditions for the existence of solutions than The-

orem 2, 3 and 5 in each case of S3, S2 and S4. Consequently,

Theorem 8 indicates that stability of interconnected systems

can be established by milder conditions in the presence of

static systems. This fact is summarized by the following.

Corollary 5: Suppose that Σ1 is static. The interconnected

system Σ is iISS with respect to input r and state x2 if one

of the following is satisfied.

(i) (ρ1, ρ2) ∈ S1 holds. There exist ci > 0, i = 1, 2 and

k > 0 such that (104) and (48) hold.

(ii) (ρ1, ρ2) ∈ S5 holds. The condition (94) and one of (96)

and (97) are satisfied. There exist ci > 1, i = 1, 2 such

that (95) holds.

Furthermore, if α2 ∈ K∞, the interconnected system Σ is ISS.

Corollary 6: Suppose that Σ1 is static. The cascade system

Σc is iISS with respect to input r and state x2 if one of the

following is satisfied.
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(i) (ρ1, ρ2) ∈ S1 holds. There exist c1 > 0 and k > 0 such

that

[σ2(s)]
k ≤ c1α1(s), ∀s ∈ R+ . (105)

(ii) (ρ1, ρ2) ∈ S5 holds. Either of

lim sup
s→∞

σr1(s) ≤ lim
s→∞

α1(s) or α1 ∈ K∞ (106)

and (97) is satisfied.

Furthermore, the cascade system Σc is ISS if α2 ∈ K∞ is

satisfied additionally.

Remark 10: For static systems, the inequality constraints

in (94) and (106) can be assumed without loss of generality.

Violation of the constraints implies that the functions α1 σ1

and σr1 form a unreasonably loose bound for the system Σ1.

For instance, in the case of r1(t) ≡ 0, if σ1(∞) > α1(∞)
holds, Assumption 2 does not guarantee that finite u1(t)
results in finite z1(t). This fact contradicts the assumption that

h1(t, u1, 0) is locally Lipschitz with respect to u1 on R
nu1 .

Thus,

lim
s→∞

σ1(s) ≤ lim
s→∞

α1(s)

is necessary for excluding the unreasonable case. In the same

way, unless the inequality

lim
s→∞

σ1(s) < lim
s→∞

α1(s)

holds, the static system h1(t, u1, r1) satisfying Assumption 2

is not guaranteed to be locally Lipschitz with respect to u1 on

R
nu1 however small r1 > 0 is. When u1 is absent, we need

lim sup
s→∞

σr1(s) ≤ lim
s→∞

α1(s)

to ensure that the static system Σ1 defined by Assumption 2

is locally Lipschitz in r1 ∈ R
nr1 .

Remark 11: When {α1 ∈ K \ K∞, σ1 ∈ K, σr1 ∈ P0}
achieves Assumption 2, there exists another triplet {α̂1 ∈ K∞,

σ̂1 ∈ K, σ̂r1 ∈ P0} satisfying Assumption 2, provided that

(26) holds. However, this transformation sometimes causes

conservatism in evaluating (95).

V. EXAMPLES

This section illustrates the effectiveness of the state-

dependent scaling approach through several simple examples

of the interconnected system Σ in Fig.1. It is shown how

scaling functions are obtained explicitly, and how they give

Lyapunov functions establishing stability properties of Σ. The

first two examples demonstrate that the state-dependence of

scaling functions, i.e., ‘non-linearly scaled combination’ of

supply rates is vital for dealing with nonlinearities which are

not covered by classical stability criteria.

Example 1: Consider the following equations.

Σ1 : ẋ1 = −

(

x1

x1 + 1

)2

+ 3

(

x2

x2 + 1

)2

(107)

Σ2 : ẋ2 = −
4x2

x2 + 1
+

2x1

x1 + 1
+ 6r2 (108)

x1(0), x2(0) ∈ R+, r2(t) ∈ R+ .

The interconnected system Σ is defined for x = [x1, x2]
T ∈

R
2
+ and r2 ∈ R+. Indeed, x(0) ∈ R

2
+ and r2(t) ∈ R+, ∀t ∈

R+ imply that x(t) ∈ R
2
+, ∀t ∈ R+. Although this example

is for a compact illustration of theoretical development in

this paper, it is motivated by models of biological processes

which usually involve Monod nonlinearities and exhibit the

non-negative property. The two systems are iISS with respect

to input (ui, ri) and state xi, where u1 = x2 and u2 = x1 hold,

and r1 is null. Neither Σ1 nor Σ2 is ISS with respect to input

(ui, ri) and state xi. Due to the non-negative property, the

simplest choices of supply rates for Σ1 and Σ2 are ρ1 = ẋ1 and

ρ2 = ẋ2 associated with iISS Lyapunov functions V1(x1) =
x1 and V2(x2) = x2. It is not difficult to calculate λ1(x1) and

λ2(x2) achieving the scalar inequality (15) of Problem 1. The

sum of scaled supply rates is

S(x, r2) = λ1ρ1 + λ2ρ2

= −

[

λ1

(

x1

x1+1

)2

− 2λ2
x1

x1+1

]

−

[

4λ2
x2

x2+1
− 3λ1

(

x2

x2+1

)2
]

+ 6λ2r2 .

There are no constants λ1, λ2 > 0 which render S(x, 0)
negative definite. Thus, we need to introduce a function to

at least one of λ1 and λ2. Since ρ1 = ẋ1 and ρ2 = ẋ2 yield

α1(s)=

(

s

s+ 1

)2

, σ1(s)=3

(

s

s+ 1

)2

α2(s)=
4s

s+ 1
, σ2(s)=

2s

s+ 1
, σr2(s)=6s

which fulfill (ρ1, ρ2) ∈ S1, we use Theorem 4 to obtain

{λ1, λ2} satisfying (15). The inequalities in (47) are obtained

as

2k
(

s

s+ 1

)k

≤ c1

(

s

s+ 1

)2

, ∀s ∈ R+

3c2

(

s

s+ 1

)2

≤ 4k
(

s

s+ 1

)k

, ∀s ∈ R+ .

These two inequalities and 0 < c1 < c2 are achieved by k = 2,

c1 = 4 and c2 ∈ (4, 16/3]. Thus, the iISS property of Σ with

respect to input r2 and state x follows from Corollary 1(i).

Theorem 4 provides a solution to Problem 1 as

λ1(s) = 1, λ2(s) = bs/(s+ 1), b ∈ [1.6119, 2) . (109)

An iISS Lyapunov function of Σ is obtained from (17) as

Vcl(x) = x1 + b(x2 − log(x2 + 1)), b ∈ [1.6119, 2) .

The value of λ1ρ1 + λ2ρ2 with (109) and b = 1.7 is plotted

on the state space in Fig.4. For visual simplicity, the surface

is drawn for r2 = 0. It is observed that the surface of λ1ρ1 +
λ2ρ2 is below the horizontal plane of zero. This confirms that

Problem 1 is solved by the choice (109),

Example 2: Consider

Σ1 : ẋ1 = −
2x1

x1 + 1
+

x2

x2 + 1
, x1(0) ∈ R+ (110)

Σ2 : ẋ2 = −
4x2

x2 + 1
+ x1, x2(0) ∈ R+ . (111)
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The interconnected system Σ satisfies x ∈ R
2
+ or all t ∈ R+.

The choice V1(x1) = x1 yields V̇1 = ρ1(x1, x2) for

α1(s) =
2s

s+ 1
, σ1(s) =

s

s+ 1
.

Since (35) holds, the system Σ1 is ISS with respect to input

x2 and state x1. The system Σ2 is not ISS since we have

x2 → ∞ as t → ∞ for x1(t) ≡ 5. The system Σ2 is iISS

since the choice V2(x2) = x2 gives V̇2 = ρ2(x2, x1) and

α2(s) =
4s

s+ 1
, σ2(s) = s .

It is easily seen that Problem 1 is not solvable by any constant

λ1 and λ2. Due to (ρ1, ρ2) ∈ S2 and (35), Theorem 3 can be

used for finding λ1 and λ2, From

c2σ2 ◦ α
−1
1 ◦ c1σ1(s) =

c1c2s

(2− c1)s+ 2

it follows that (39) is identical with the pair of 8−c1c2−4c1 ≥
0 and c1 ≤ 2. Since there exist such c1, c2 > 1, we have (39)

fulfilled. In addition, we obtain (43) as well as (38) for k = 1
from

σ2(s)

α1(s)
=

s+ 1

2
,

α2(s)

σ1(s)
= 4 .

According to Corollary 1(ii), the origin x = 0 is globally

asymptotically stable. A solution

λ1(x1) = x1(x1 + 1), λ2(x2) =
7x2

x2 + 1
(112)

of Problem 1 is given by (29) and (30) with c1 = 1.2, c2 = 2.5,

q = 2, ν = 2c−1
1 c

−2/3
2 and δ = 0.9044. A Lyapunov function

of Σ is given by (17) as

Vcl(x) =
x3
1

3
+

x2
1

2
+ 7(x2 − log(x2 + 1)) .

Figure 5 illustrates that the choice (112) solves Problem 1. It

is worth noting that the solution and the stability cannot be

derived from Theorem 4. In fact, the first inequality in (47) is

not achievable by any k > 0 since we have

[σ2(s)]
k = sk, α1(s) =

2s

s+ 1
.

Example 3: Consider

Σ1 : ẋ1 = −x1 − x3
1 + γ1x2, x1(0) ∈ R (113)

Σ2 : ẋ2 = −x2 − x3
2 + γ2x1, x2(0) ∈ R (114)

and their ISS Lyapunov functions Vi(xi) = x2
i /2, i = 1, 2,

considered in [26]. Supply rates

V̇i = −x2
i − x4

i + γixixj ≤ −
x2
i

2
− x4

i +
γ2
i x

2
j

2

are obtained by using Young’s inequality. The sum of scaled

supply rates is

S(x) = λ1ρ1 + λ2ρ2

= −λ1x
4
1 − λ2x

4
2 − (λ1 − γ2

2λ2)
x2
1

2
− (λ2 − γ2

1λ1)
x2
2

2
.

It is straightforward that Problem 1 is solved by ‘constants’

λ1 and λ2 satisfying

0 < λ1γ
2
1 ≤ λ2 ≤ λ1γ

−2
2 . (115)
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Fig. 4. State-dependently scaled combination of supply rates in Example 1.
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Fig. 5. State-dependently scaled combination of supply rates in Example 2.

Thus, the origin x = 0 of the interconnected system Σ is

globally asymptotically stable for |γ1γ2| ≤ 1. With ‘any

positive constants’ λ1 and λ2, Theorem 1 also guarantees that,

if |γ1γ2| > 1, there exist a bounded set toward which the

state x converges. The set is easily determined by the smallest

level set of Vcl = λ1V1 + λ2V2 including S(x) ≥ 0. The

question of ’global’ asymptotic stability also fits in formulas

presented in Subsection III-C. For example, we can apply

even the most restricted formulas in Theorem 4 by considering

k = 1, ρe = −λ1x
4
1 − λ2x

4
2 + ρ̃e. and αi(s) = s4 + α̃i(s).

Since ρ̃e is only required to be semi-negative definite for the

global asymptotic stability, the equal sign is allowed in (48).

The set of c1 ≤ c2 and (47) is identical to |γ1γ2| ≤ 1, and it

ensures the ‘global’ asymptotic stability. The formulas in (50)

give (115) at the same time.

VI. CONCLUSION

In this paper, stability criteria for interconnected iISS and

ISS systems have been derived. In the course of the devel-

opment, this paper has presented a new framework of state-

dependent scaling for establishing stability properties of inter-

connected dissipative systems. State-dependent scaling prob-

lems are introduced as unified formulation without limitations
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on supply rates. The formulation can be considered as seam-

less incorporation of the dissipative approach[1], the integral-

type of Lyapunov functions[18], [20] and the ISS small-

gain technique[19]. If we restrict our attention to traditionally

popular supply rates, classical stability criteria can be extracted

as special cases where calculation of solutions to the state-

dependent scaling problems is straightforward. The criteria are

viewed as sufficient conditions for the existence of solutions.

The solutions lead to Lyapunov functions of interconnected

systems immediately. Unfortunately, it is not possible to find

solutions of state-dependent scaling problems systematically

for arbitrarily general systems. The existence of solutions is

not trivial in general either. This fact motivated the author

to deeply investigate the issues of how to obtain solutions

and when they exist for systems which are not covered by

stability criteria available previously. For this purpose, this

paper has focused on interconnected systems consisting of iISS

and ISS systems. As a result, explicit formulas for solutions

have been derived. Sufficient conditions for the existence have

been obtained as small-gain-like theorems which generalize

the ISS small-gain theorem smoothly.

The developments of this paper have brought up some in-

teresting issues. Further research is needed to pursue solutions

to the state-dependent scaling problems for various types of

supply rate. It is worth stressing that analytical computation

is not the only way to make use of the developments of this

paper. Using increasing power of computers and softwares, we

can seek solutions numerically. While analytical investigation

this paper mainly focuses on gives us guarantees of the

effectiveness for some representative types of supply rate,

numerical computation allows us to try to find solutions for

more general supply rates. Computational methods in control

theory have increasingly attracted public attention recently.

Some examples are sum of squares programming[28], [29] and

convex relaxation techniques which combine computational

algebra and convex optimization. Problem 1 is jointly affine

in the parameters λ1 and λ2, and Problem 2 is also jointly

affine in these parameters. The affine property should be

advantageous to numerical computation. It is an important and

practical direction of future research to seek efficient numerical

optimization algorithm for state-dependent scaling problems.

Another direction of future research is to pursue analytical

formulas for supply rates which are more general than the

iISS property. This paper assumes that supply rates are given

a priori for individual systems. For a practical example of

the iISS property and manipulation to obtain functions of

supply rates, the readers may refer to [8]. The issue of how

to determine supply rates systematically in practice has not

been answered satisfactorily in the literature yet. It needs to

be addressed in the future.

APPENDIX

A. Proof of Theorem 1

The function Vcl(t, x) defined by (17) is C1 since λ1 and λ2

are continuous. The assumptions of (10) and (12)-(14) imply

the existence of αcl, ᾱcl ∈ K∞ satisfying (18). Due to (11), the

time-derivative of Vcl(t, x) along the trajectories of Σ satisfies

∂Vcl

∂t
+

∂Vcl

∂x1
f1 +

∂Vcl

∂x2
f2 ≤ λ1(V1)ρ1 + λ2(V2)ρ2 .

From (15) we obtain (19). The property (16) guarantees global

uniform asymptotic stability of x = 0 when r(t) ≡ 0.

B. Proof of Theorem 2

(i) and (ii) for α2 ∈ K: Define δ and choose δ̄ as

δ = δ
1

q+1 , δ < δ̄ < 1 . (116)

The inequality (32) and c2 > 1 ensure the existence of µ and

µ̃ satisfying 0 < µ̃ < µ and
(

c2µ̃

µ

)q

≥
1

δ(c1 − 1)
. (117)

Suppose τ > 1. Then, there exists τr > 1 such that

1−
1

τ
−

1

τr
≥ δ̄

(

1−
1

τ

)

(118)

is satisfied. Define θ1 ∈ K and θr1 ∈ P0 as follows:

θ1(s) = ᾱ1 ◦ α
−1
1 ◦ τσ1(s), θr1(s) = ᾱ1 ◦ α

−1
1 ◦ τrσr1(s)

Combining calculations in individual cases separated by

α1(|x1|) ≥ τσ1(|x2|), α1(|x1|) < τσ1(|x2|), α1(|x1|) ≥
τrσr1(|r1|) and α1(|x1|) < τrσr1(|r1|), we obtain

λ1(V1(t, x1)) {−α1(|x1|) + σ1(|x2|) + σr1(|r1|)}

≤ δ̄

(

−1 +
1

τ

)

λ1(V1(t, x1))α1(|x1|)

+λ1(θ1(|x2|))σ1(|x2|) + λ1(θr1(|r1|))σr1(|r1|) (119)

on the assumption that λ1 is non-decreasing on R+. Using

1

p
+

1

q
= 1 , (120)

we define p > 1. The property 0 < µ̃ < µ guarantees the

existence of µr > 0 satisfying

1

µ̃p
≥

1

µp
+

1

µp
r
. (121)

Using Young’s inequality, we obtain

λ2(V2(t, x2)) {−α2(|x2|) + σ2(|x1|) + σr2(|r2|)}

≤ −λ2(V2(t, x2))α2(|x2|)

+
νq

µ̃q

[

1

p

(

µ̃q

νqµ
λ2(V2(t, x2))

)p

+
µq

q
σ2(|x1|)

q

+
1

p

(

µ̃q

νqµr
λ2(V2(t, x2))

)p

+
µq
r

q
σr2(|r2|)

q

]

. (122)

Define ρe(x, r) with

αcl(s)= min
s=|x|

{

(δ̄ − δ)
τ−1

τ
λ1(α1(|x1|))α1(|x1|)

+(1− δ)λ2(α2(|x2|))α2(|x2|)}

σcl(s)=max
s=|x|

{λ1(θr1(|r1|))σr1(|r1|)

+ν

(

µr

µ̃

)q

σr2(|r2|)
q

}

.
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The inequality (15) is achieved if the pair of λ1 and λ2 solves

−δ
τ−1

τ
λ1(s)α1(ᾱ

−1
1 (s)) + ν

(

µ

µ̃

)q

[σ2(α
−1
1 (s))]q≤0 (123)

1

p

(

1

νq

)p−1

λ2(s)
p − δλ2(s)α2(ᾱ

−1
2 (s))

+λ1(θ1(α
−1
2 (s)))σ1(α

−1
2 (s)) ≤ 0 (124)

for all s∈R+ and if λ1 is non-decreasing. Here, α2 ∈ K is

assumed in obtaining (124). Substituting λ2 given by (30) in

(124), we obtain

λ1(θ1(s))σ1(s) ≤ ν[δα2(ᾱ
−1
2 (α2(s)))]

q ∀s ∈ R+ (125)

Hence, the pair of (123) and (124) holds if the non-decreasing

function λ1 given by (29) satisfies (125) and

νµqτ [σ2(α
−1
1 (s))]q

µ̃qδ(τ−1)α1(ᾱ
−1
1 (s))

≤ λ1(s), ∀s ∈ R+ . (126)

The choice of λ1 satisfies (126) with τ = c1 by virtue of (116)

and (117). It also satisfies (125) if

max
w∈[0,s]

[c2σ2(α
−1
1 (θ1(w)))]

q

α1(ᾱ
−1
1 (θ1(w)))

≤
[α2(ᾱ

−1
2 (α2(s)))]

q

c1σ1(s)
(127)

holds for all s∈R+ with τ = c1. Suppose (27) holds. Due to

the maximization in (27) we have

c2σ2 ◦ α
−1
1 ◦ ᾱ1 ◦ α

−1
1 ◦ c1σ1(s) ≤ α2 ◦ ᾱ

−1
2 ◦ α2(s)

for all s∈R+. The increasing property of the left hand side

of this inequality implies

max
w∈[0,s]

c2σ2 ◦ α
−1
1 ◦ ᾱ1 ◦ α

−1
1 ◦ c1σ1(w) ≤ α2 ◦ ᾱ

−1
2 ◦ α2(s) .

Combining this with (27), we obtain (127) for q ≥ k. Thus,

if (27) is satisfied, the non-decreasing functions λ1 and λ2 in

(29) and (30) achieve (123) and (124) for τ = c1.

(i) and (iii) for α2 ∈ P \K: The function α̂2 ∈ K exists since

the left hand side of (27) is non-decreasing and σ1, ᾱ−1
2 ◦ α2

∈ K. The inequality (15) holds with α2 if it holds with α̂2.

C. Proof of Theorem 3

Case (36): The proof of Theorem 2 leads to the claim if

τr and δ̄ are chosen carefully. The definition of θr1 requires

τr lim sups→∞ σr1(s) ≤ lims→∞ α1(s). The choice τ = c1
and (118) require τr to satisfy τr ≥ c1/(1− δ̄)(c1 − 1). Such

τr and a number δ̄ satisfying δ < δ̄ < 1 exist if (36) holds.

Case (37): The definition (29) implies λ1 ∈ K \ K∞,

which guarantees supt∈R+, x1∈Rn1 λ1(V1(t, x1)) ≤ d for

some finite d > 0. Remove τr and θr1 and replacing

λ1(θr1(|r1|))σr1(|r1|) with dσr1(|r1|) in (119).

D. Proof of Lemma 1

(i): Suppose that (38) and (39) hold for a constant k > 0.

Since α2 is class K, we have

[c2σ2 ◦ α
−1
1 ◦ ᾱ1 ◦ α

−1
1 ◦ c1σ1(s)]

k

σ1(s)

≤ inf
w∈[s,∞)

[α2 ◦ ᾱ
−1
2 ◦ α2(w)]

k

σ1(w)
. (128)

This implies (27). Conversely, we assume (27) for a constant

k > 0. Let η : s ∈ R+ → R+ denote the left hand side

of (27). The function η is continuous and non-decreasing in

s ∈ R+ due to the maximization, and it satisfies η(s) > 0 for

all s > 0. Define a function α̂2 ∈ K by

α̂2(s) = [η ◦ α−1
2 ◦ ᾱ2(s)]

1/k[σ1 ◦ α
−1
2 ◦ ᾱ2(s)]

1/k .

From (27) we obtain (40), (41) and (42).

(ii): On the assumption of (43), the condition (39) implies

(27). Conversely, we assume (27) for a constant k > 0, which

is equivalent to (128). Define η : s ∈ R+ → R+ as the right

hand side of (128). The function η is continuous and non-

decreasing in s, and it satisfies η(s) > 0 for all s > 0. Let

d = lims→∞ α−1
1 ◦ ᾱ1 ◦ α−1

1 ◦ c1σ1(s). Choose a function

σ̂2 ∈ K so that

c2σ̂2 ◦ α
−1
1 ◦ ᾱ1 ◦ α

−1
1 ◦ c1σ1(s) = [η(s)]1/k[σ1(s)]

1/k

is satisfied for all s ∈ R+ and (44) holds for all s ∈ [d,∞).
The existence is guaranteed since the right hand side is class

K. Then, we obtain (45) and (46). The condition (128) implies

(44) for all s ∈ [0, d).

E. Proof of Theorem 4

(i) and (ii) for k = 1: Using (47), we obtain λ1ρ1+λ2ρ2 ≤
−(λ1 − λ2c1)α1(s)− (λ2 − λ1/c2)α2(s). Let ρe(x, r) be

ρe(x, r) = −(1− δ) [λ1α1(|x1|) + λ2α2(|x2|)]

+λ1σr1(|r1|) + λ2σr2(|r2|) .

The inequality (15) is achieved with (50) since the pair of (48)

and (51) guarantees c1 ≥ δc1 and δ3c2 ≥ c1.

(i) and (ii) for k > 1 and α2 ∈ K: Set q = k. Let µ and µ̃ be

any positive constants satisfying

(µ̃/µ)
q
= δ . (129)

Let p > 1 be defined by (120). Since (48) and (51) imply

0 < δ < 1, we have 0 < µ̃ < µ which ensures the existence of

µr > 0 satisfying (121). Using Young’s inequality, we obtain

(122). Define

αcl(s)= min
s=|x|

(1− δ) [λ1α1(|x1|) + λ2(α2(|x2|))α2(|x2|)]

σcl(s)=max
s=|x|

{

λ1σr1(|r1|) + ν

(

µr

µ̃

)q

σr2(|r2|)
q

}

.

The function ρe(x, r) with λ1 > 0 and λ2 ∈ K given in (50)

satisfies αcl∈P and σcl∈K. Define λ1 as in (50). A sufficient

condition for (15) is obtained as

−
νc1
δ2

δα1(|x1|) + ν

(

µ

µ̃

)q

σ2(|x1|)
q ≤ 0, ∀x1∈R

n1 (130)

(

1

νq

)
1

q−1 q−1

q
λ2(V2(t, x2))

q

q−1 − δλ2(V2(t, x2))α2(|x2|)

+
νc1
δ2

σ1(|x2|) ≤ 0, ∀x2∈R
n2 , ∀t∈R+ .(131)

Due to (129), the inequality (130) is identical to [σ2(s)]
q ≤

c1α1(s), which is implied by the first inequality in (47). Since
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α2 ∈ K is non-decreasing, the inequality (131) holds if

(

1

νq

)
1

q−1 q − 1

q
λ2(s)

q

q−1 − δλ2(s)α2(ᾱ
−1
2 (s))

+
νc1
δ2

σ1(α
−1
2 (s)) ≤ 0, ∀s∈R+ (132)

is satisfied. This inequality (132) is equivalent to

νc1
δ2

σ1(α
−1
2 (s)) ≤ νδq[α2(ᾱ

−1
2 (s))]q ∀s ∈ R+

when λ2 ∈ K is given by (50). Due to (51), the above

inequality is identical to the second inequality in (47).

(i) and (iii) for k < 1 and α1 ∈ K: Switch ρ1 and ρ2,

and repeat the argument above with k = 1/q by exchanging

subscripts 1 and 2 each other.

(i) and (iv) for αi ∈ P \K: The existence of α̂i ∈ K satisfying

follows from (47) and σi, α
−1
i , ᾱ−1

i ∈ K.

F. Proof of Theorem 5

(i) and (ii) for σ1 ∈ K∞: Let δ̄ be a real number satisfying

0 < δ < δ̄ < 1, and set τ2 = c2. For each i = 1, 2, there

exists τri > 1 such that

1−
1

τi
−

1

τri
≥ δ̄

(

1−
1

τi

)

is satisfied since τi > 1. Define θi ∈ K and θri ∈ P0 as

θi(s) = ᾱi ◦ α
−1
i ◦ τiσi(s), θri(s) = ᾱi ◦ α

−1
i ◦ τriσri(s)

for i = 1, 2. Since the functions λi : R+ → R+ i = 1, 2 given

in (62) and (63) are non-decreasing, we obtain

λi(Vi(t, xi)){−αi(|xi|) + σi(|ui|) + σri(|ri|)}

≤ δ̄

(

−1+
1

τi

)

λi(αi(|xi|))αi(|xi|)

+λi(θi(|ui|))σi(|ui|) + λi(θri(|ri|))σr1(|ri|) (133)

for i = 1, 2. Thus, the inequality (15) is achieved if

λ1(θ1(s))σ1(s) ≤ δ
τ2 − 1

τ2
λ2(α2(s))α2(s), ∀s ∈ R+(134)

λ2(θ2(s))σ2(s) ≤ δ
τ1 − 1

τ1
λ1(α1(s))α1(s), ∀s ∈ R+(135)

hold. In fact, αcl ∈ K∞ and σcl ∈ P0 in (61) are

αcl(s)= min
s=|x|

(δ̄ − δ)

2
∑

i=1

τi − 1

τi
λi(αi(|xi|))αi(|xi|)

σcl(s) = max
s=|r|

2
∑

i=1

λi(θri(|ri|))σri(|ri|) .

It is seen that (134) and (135) are fulfilled if λ1 and λ2 achieve

δ2(τ1 − 1)(τ2 − 1)

τ1τ2
α2(α

−1
2 (θ2(s)))α1(s)λ1(α1(s))

≥ σ2(s)σ1(α
−1
2 (θ2(s)))λ1(θ1(α

−1
2 (θ2(s)))) (136)

λ1(θ1(s))σ1(s) = δ
τ2 − 1

τ2
λ2(α2(s))α2(s) (137)

for all s ∈ R+. Here, σ2 ∈ K∞ is assumed in obtaining

(136). From s ≤ α−1
2 ◦ ᾱ2(s) it follows that τ2σ2(s) ≤

α2(α
−1
2 (θ2(s))). Thus, (136) is implied by

σ1(α
−1
2 (θ2(s)))λ1(θ1(α

−1
2 (θ2(s))))

≤
δ2(τ1 − 1)(τ2 − 1)

τ1
α1(s)λ1(α1(s)) . (138)

Remember that ν1 and α2 are non-decreasing. Using (62) and

ᾱ−1
1 ◦ α1(s) ≤ s, we can verify that the inequality (138) is

satisfied if

τ1σ1 ◦ α
−1
2 ◦ θ2(s) ≤ α1 ◦ ᾱ

−1
1 ◦ α1(s), ∀s ∈ R+ (139)

τ1

[δ2(τ1−1)(τ2−1)]
1

m+1

σ1◦ α
−1
2 ◦ θ2(s)

≤ α1◦ ᾱ
−1
1 ◦ α1(s), ∀s ∈ R+ (140)

hold. Since τ1 ≤ c1 and τ2 ≤ c2 hold. the inequality (60)

guarantees (139). Due to (66), the inequality (60) also implies

(140). On the other hand, using

λ1 ◦ ᾱ1 ◦ α
−1
1 (τ1s) = ν1(s)

[

α2 ◦ σ
−1
1 (s)

]

sm

θ1 ◦ α
−1
2 (s) = ᾱ1 ◦ α

−1
1 ◦ τ1σ1 ◦ α

−1
2 (s)

we can verify that λ2(s) given in (63) solves (137). Hence,

the inequality (15) is achieved by λ1 and λ2 given in (62) and

(63). In the case of σ2 ∈ K\K∞, there is σ̂2 ∈ K∞ such that

σ2(s) ≤ σ̂2(s) and

α−1
1 ◦ ᾱ1 ◦ α

−1
1 ◦ c1σ1 ◦ α

−1
2 ◦ ᾱ2 ◦ α

−1
2 ◦ c2σ̂2(s) ≤ s

hold for all s ∈ R+. We can repeat the argument below (136)

with σ̂2. Note that (62) and (63) do not involve σ2.

(i) and (iii) for σ1 ∈ K \ K∞: The function σ̂1 ∈ K∞ exists

since the right hand side of (60) is class K∞.

G. Proof of Theorem 6

(i): Suppose that (47)-(48) holds for some c1 > 0, c2 > 0
and k > 0. Then, it follows that

max
w∈[0,s]

[ĉ2σ2 ◦ α
−1
1 ◦ ᾱ1 ◦ α

−1
1 ◦ ĉ1σ1(w)]

k

σ1(w)
≤ ĉ1ĉ

k
2c1

c2 ≤
[α2 ◦ ᾱ

−1
2 ◦ α2(s)]

k

σ1(s)

hold for all s ∈ R+ with arbitrary ĉ1, ĉ2 > 0. Let ĉ2 =

(c2/c1ĉ1)
1/k

. On the assumption (48), there exists ĉ1 > 1
such that ĉ2 > 1 holds. Thus, we arrive at (27).

(ii): Due to (27), we obtain (60) from

[c2σ2 ◦ α
−1
1 ◦ ᾱ1 ◦ α

−1
1 ◦ c1σ1(s)]

k

σ1(s)
≤

[α2 ◦ ᾱ
−1
2 ◦ α2(s)]

k

σ1(s)
.

H. Proof of Corollary 3

(i): The claim is obtained from Theorem 4 immediately.

(ii): The proof is different from the case of (iii) in the following

points. The number δ > 0 in (32) can be made arbitrarily small

by choosing sufficiently large c1, c2 > 1. Thus, we obtain (72)

from (36) and sufficiently large c1.

(iii): The proof is the same as that of Theorem 2 up to (126)

and (125). The inequality (125) is satisfied automatically due
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to σ1 = 0. The condition (73) guarantees that the choice (29)

of λ1 solving (126) is non-decreasing.

(iv) and (v): Exchanging subscripts 1 and 2 with each other,

we consider the configuration in which Σ1 is driven by Σ2.

Since u2 is absent, we can choose an arbitrarily small σ2 ∈
K \ K∞ fictitiously so that (27) is satisfied. Then, the proofs

of Theorem 3 and Theorem 2 prove the claims.

I. Proof of Theorem 7

The increasing property of ξ1 and the inequalities (75) and

(80) yield ξ1(ϕ1) ≤ ξ1(ϕ1 + ρ1). For Vcl given in (84), the

existence of αcl, ᾱcl ∈ K∞ in (18) is guaranteed by (10) and

(76)-(78). The time-derivative of Vcl satisfies

∂Vcl

∂t
+

∂Vcl

∂x
f2 ≤ λ1(t, z1, x2, r) [−ξ1(ϕ1)+

ξ1(ϕ1 + ρ1)] + λ2(V2(t, x2))ρ2

along the trajectories of Σ since the range of λ1 is in R+

and V2 satisfies (11). The inequality (19) follows from (81).

The property (82) implies that x2 = 0 is globally uniformly

asymptotically stable when r(t) ≡ 0.

J. Proof of Theorem 8

(i) and (ii): Define δ and ζ as 0 < δ = 1/c2 < 1 and

0 < ζ = 1/(c1 − 1). Then, we obtain

σ2(|u2|) ≤ ξ1 (σ1(|x2|) + σr1(|r1|))

≤ σ2 ◦ α
−1
1 ◦ (1+1/ζ)σ1(|x2|)

+ξ1◦ (ζ+1)σr1(|r1|) (141)

from (75) and (92). Pick

ρe(x2, r) = −ν(1−δ)α2(|x2|)

+νξ1 ◦ (ζ+1)σr1(|r1|) + νσr2(|r2|) .

The inequality (81) is satisfied if (95) holds. If α1 ∈ K \ K∞

and σ2(∞) = ∞ hold, we need (ζ+1) lim sups→∞ σr1(s) ≤
α1(∞) in (141), which is the first inequality in (96).

(iii): The term of σr1 disappears from (141). Thus, we can

replace (1+1/ζ) with 1.
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