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Abstract—This paper is concerned with conditions for the
stability of interconnected nonlinear systems consisting of integral
input-to-state stable(iISS) systems with external inputs. The
treatment of iISS and input-to-state stable (ISS) systems is
unified. Both necessary conditions and sufficient conditions are
investigated using a Lyapunov formulation. In the presence of
model uncertainty, this paper proves that, for the stability of
the interconnected system, at least one subsystem is necessarily
ISS which is a stronger stability property in the set of iISS. The
necessity of a small-gain-type property is also demonstrated. This
paper proposes a common form of smooth Lyapunov functions
which can establish the iISS and the ISS of the interconnection
comprising iISS and ISS subsystems whenever the small-gain-
type condition is satisfied. The result covers situations more
general than the earlier study and removes technical conditions
assumed in the previous literature. Global asymptotic stability is
discussed as a special case.

Index Terms—Nonlinear interconnected systems, Integral
input-to-state stability, Small gain condition, Necessary condition,
Lyapunov function.

I. INTRODUCTION

THE problem of establishing stability of interconnection

has always been a fundamental issue within the systems

and control community. As the nonlinearities we are dealing

with are growing more complex, it becomes more difficult

to derive conditions under which interconnected systems are

stable. In order to succeed in analyzing and designing a wide

range of nonlinear systems, we need stability criteria which

are not only universal, but also accommodate nonlinearities

effectively. For about a decade, the input-to-state stability (ISS)

property has been a useful way to characterize nonlinearities

in view of stability [22]. It did not take a long time for

the ISS framework to be appreciated by the emergence of

the ISS small-gain theorem [14], [15], [25]. The ISS small-

gain theorem provides a sufficient condition for the stability

of a feedback system comprised of ISS subsystems. The

ISS small-gain theorem makes use of the idea of nonlinear

loop gain, which is also implemented as a slightly different

differential inequality in [19]. There is another important class
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of systems which are not necessarily ISS. This is characterized

by the integral input-to-state stability (iISS) property [2], [23].

Those systems have finite nonlinear gain only in a very weak

sense(See [13] for an illustrative example). In contrast to ISS

systems, because of the weakness of gain, the cascade of iISS

systems are not always stable [3], [4]. In spite of such a

weak gain property, a stability criterion covering iISS systems

in feedback configurations has been developed recently by

one of the authors [10], which is a result of the Lyapunov

constructive approach presented in [11]. The criterion gives a

sufficient condition for iISS property of interconnected iISS

systems in the form of a small-gain property. The possibility

of establishing stability for the feedback interconnection of

iISS systems by means of gain conditions is followed up by

a nullcline approach [1] in the absence of external signals.

Generalizing the proposed result of [1] to the case of external

stability with respect to external signals is by no means easy.

As a matter of fact, the relationship between the nullcline

approach and the Lyapunov constructive approach has not been

investigated yet.

The purpose of this paper is mainly threefold. One is to

derive necessary conditions for the stability of interconnected

systems in order to show how reasonable small-gain-type

criteria are. Another is to unify the treatment of iISS and

ISS systems by merging the two types of small-gain con-

ditions derived from the two types of Lyapunov functions

dealing with iISS and ISS separately. The third objective is

to provide Lyapunov functions in the situations considered

by the nullcline approach to global asymptotic stability(GAS)

in the absence of external signals. We place an emphasis on

Lyapunov functions to accomplish all the points. The previous

work [11] employs nonidentical Lyapunov functions for the

ISS case and the iISS case. This paper develops a single

unified formula applicable equally to iISS systems and ISS

systems. The condition of a small-gain type proposed in [11]

for iISS systems looks more complicated and more restrictive

than the small-gain condition for ISS systems. This paper

not only merges the two small-gain-type conditions, but also

removes the assumption of uniform contraction used in [11].

The removal of the uniformity assumption allows the nonlinear

loop gain to approach unity asymptotically as the magnitude

of signals tends to zero and infinity. The unification and the

generalization of Lyapunov functions also enable us to come to

the point where the necessity of the small-gain condition holds.

Furthermore, it is shown that at least one of the subsystems

in the loop needs to be ISS with respect to feedback input.
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The necessity of stability criteria has been an important

issue in the area of robust control, e.g., [6]–[8], [26]. Very

often, it is hard to obtain a mathematical model which com-

pletely captures dynamics of a physical system. Then, there is

a mismatch between the model and the reality which is widely

known under the name of uncertainty. The common idea to

deal with the uncertainty is to model the system as belonging

to a set. Stability margins characterize how modeling errors

might affect the stability of a system by measuring how close

the system is to instability. A stability criterion can provide a

precise measure of stability robustness only if the criterion

is proved to be necessary as well as sufficient for a set

describing the uncertain system. For nonlinear systems, in

a recent paper [1], the tightness of a nonlinear small-gain

condition for stability without external signals is discussed by

means of examples. To the best of the authors’ knowledge, the

necessity of small-gain conditions has not been investigated

in view of Lyapunov functions for interconnections consisting

of general ISS and iISS subsystems with external signals. In

the framework of the input-output theory initiated by Zames

and Sandberg in the 1960s [20], [27], it is worth mentioning

that there have been several important studies on the necessity

of small-gain conditions involving only the linear gains, i.e.,

Lp-type gain [9], [21]. Those results have been generalized by

using dissipative inequalities in an integral form [5], where the

notion of conditional gain is introduced to render their new

small-gain property necessary for the input-output stability

of the interconnection made of a nominal system and an

uncertainty. To address the issue of the necessity of small-

gain conditions, this paper not only brings up a weak nonlinear

gain property of iISS, but also develops a new approach based

on Lyapunov functions to obtain GAS of the equilibrium of

interest as well as the stability with respect to exogenous

disturbances. Furthermore, this paper compares the necessity

fact for nonlinear systems with that for linear systems, and

highlights important differences caused by the diversity of

nonlinearity.

The following notations are used. The symbols ∨ and ∧
denote logical sum and logical product, respectively. Negation

is ¬. The interval [0,∞) in the space of real numbers R is

denoted by R+. The Euclidean norm of a vector in R
n is

denoted by | · |. The identity map on R is denoted by Id.

A function γ : R+ → R+ is said to be of class K and

written as γ ∈ K if it is a continuous, strictly increasing

function satisfying γ(0) = 0. A function γ : R+ → R+

is said to be of class K∞ and written as γ ∈ K∞ if it is

a class K function satisfying limr→∞ γ(r) = ∞. We write

γ ∈ P0 for a function γ : R+ → R+ if it is a continuous

function satisfying γ(0) = 0. The set of γ ∈ P0 satisfying

γ(s) > 0 for all s ∈ R+ \ {0} is denoted by γ ∈ P . For a

function h ∈ P , we write h ∈ O(> L) with a non-negative

number L if there exists a positive number K > L such that

lim sups→0+ h(s)/s
K < ∞ holds. We write h ∈ O(L) when

K = L. As for limiting value of functions f, g : R+ → R+

, we use the simple notation lim f(s) = lim g(s) to describe

{lim f(s) = ∞ ∧ lim g(s) = ∞} ∨ {∞ > lim f(s) =
lim g(s)}. In a similar manner, lim f(s) ≥ lim g(s) denotes

{lim f(s) = ∞ ∨ ∞ > lim f(s) ≥ lim g(s)}. A system

Σ1 : ẋ1=f1(t, x1,u1, r1)

Σ2 : ẋ2=f2(t, x2,u2, r2)

✛

✲

✛

✲

x2

x1
r1

r2

u1

u2

Fig. 1. Interconnected system Σ.

ẋ = f(x, r) is said to be 0-GAS if the 0-input system

ẋ = f(x, 0) has a unique equilibrium which is globally

asymptotically stable. Due to space limitation and for want of

readability, several proofs are omitted but are available from

the authors upon request [12].

II. MOTIVATIONAL EXAMPLES

This section illustrates the main features of this paper using

two examples. Consider the interconnected system Σ shown

in Fig.1, and suppose that the systems Σ1 and Σ2 satisfy the

following differential dissipation inequalities:

Σi : Ṡi(|xi|) ≤ −αi(|xi|) + σi(|x3−i|) + σri(|ri|),
i = 1, 2, (1)

where the supply rates are given by

α1(s)=
βs2

s2+β
, σ1(s)=s

2, α2(s)=s
4, σ2(s)=

(

γβs2

s2+β

)2

(2)

for some β > 0, γ > 0, σri ∈ P0 and some storage function

Si ∈ K∞, i = 1, 2. Note that, for each fixed s, as β → ∞,

the above functions in (2) converge to

α1(s) = s2, σ1(s) = s2, α2(s) = s4, σ2(s) = γ2s4 .

For simplicity, these supply rates are referred to as β = ∞. It

is directly verified that

α−1
1 ◦ c1σ1 ◦ α−1

2 ◦ c2σ2(s) ≤ s, ∀s ∈ R+ (3)

is equivalent to c1
√
c2 ≤ 1/γ for each β ∈ (0,∞]. Thus, there

exist c1, c2 > 1 such that (3) holds if and only if γ < 1. This

paper will show that, for an arbitrary pair σr1, σr2 ∈ P0, the

function

Vcl(x) =

∫ S1(|x1|)

0

λ1(s)ds+

∫ S2(|x2|)

0

λ2(s)ds (4)

establishes iISS of the interconnected system Σ with respect

to input (r1, r2) and state (x1, x2) if γ < 1. The integrands

λ1, λ2 : R+ → R+ derived by this paper are

λ1(s) =
d(c2 − 1)

c2

(

β(S−1
1 (s))2

c1((S
−1
1 (s))2 + β)

)K+1

(5)

λ2(s) = (S−1
2 (s))2K (6)

c1=
1

2

(

1+
1√
c2γ

)

, c2=
1

4

(

1+
1

γ

)2

, d=
√

γc1
√
c2 (7)

q =
γc1

√
c2

1− γc1
√
c2

(

1

(c1 − 1)(c2 − 1)
− 1

)

(8)

K =

{

0 , if (c1 − 1)(c2 − 1) > 1
max{1, q} , otherwise

. (9)
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Note that, in the case of β < ∞, the system Σ1 is not

necessarily ISS with respect to input x2 and state x1, but it

is always iISS. However, Σ1 becomes ISS if β = ∞. This

paper demonstrates that iISS systems and ISS systems can be

dealt with equally by a common small-gain condition (3) and

a common formula for constructing a Lyapunov function of

the feedback loop. In fact, the function Vcl with functions λ1,

λ2 defined as in (5)-(9) serves as an iISS Lyapunov function

for each β ∈ (0,∞] whenever γ < 1 holds. In the case of

β = ∞, it becomes an ISS Lyapunov function. This paper

will also show that there is always a counterexample when

γ ≥ 1 holds in each case of β ∈ (0,∞]. Let

Σ1 : ẋ1 =
8

3

{−β|x1|
1
2

|x1|2+β

+

(

β3(σ̃1(|u1|)+σ̃r1(|r1|))
(|x1|2+β)3

)

1
4
}

x1 , x1 ∈ R
2 (10)

σ̃1(s)=

{

100s4 , 0 ≤ s < 0.1

s2 , 0.1 ≤ s

Σ2 : ẋ2 =
8

3

{

−|x2|
5
2

+|x2|
3
2 (σ̃2(|u2|) + σ̃r2(|r2|)))

1
4

}

x2, x2 ∈ R
2 (11)

σ̃2(s)=



















(

0.01+β

0.01γβ

)2(
γβs2

s2+β

)4

, 0 ≤ s < 0.1

(

γβs2

s2 + β

)2

, 0.1 ≤ s

σ̃ri(s) =

{

100s4 , 0 ≤ s < 0.1

s2 , 0.1 ≤ s
, i = 1, 2 .

For Si(|xi|) = |xi|3/2, i = 1, 2, these systems satisfy (1) with

(2). In the case of β = ∞, the ẋ1-equation and σ̃2 become

ẋ1 =
8

3

{

−|x1|
1
2 + (σ̃1(|u1|)+σ̃r1(|r1|)))

1
4

}

x1, x1 ∈ R
2

σ̃2(s)=

{

104γ2s8 , 0 ≤ s < 0.1

γ2s4 , 0.1 ≤ s

and therefore fulfill (1). Trajectories of the interconnected

system Σ given by (10) and (11) with the initial condition

x1(0) = [−2, 2]T , x2(0) = [3,−1]T are plotted in Fig.2 for

γ = 0.9. γ = 1 and γ = 1.1 in each case of β = 1 and β = ∞.

The six plots suggest that the equilibrium [xT1 , x
T
2 ]

T = 0 of

the interconnection Σ with r1(t) ≡ 0 and r2(t) ≡ 0 is GAS ,

i.e., Σ is 0-GAS, if and only if γ < 1, which will be confirmed

theoretically by the main results of this paper. Note that the 0-

GAS is necessary for iISS and ISS. A single formula employed

in this paper gives a pair {Σ1, Σ2} achieving the instability of

the interconnection whenever γ ≥ 1 holds for each β ∈ (0,∞],
which again deals with iISS and ISS in a unified manner.

The previously existing results can only treat ISS and iISS

separately with mutually different Lyapunov functions [10],

[11], [14].

The condition (3) with c1, c2 > 1 always implies

α−1
1 ◦ σ1 ◦ α−1

2 ◦ σ2(s) < s, ∀s ∈ (0,∞) , (12)

while the condition (12) does not guarantee the existence of

c1, c2 > 1 achieving (3). To illustrate (12) which is milder

than the existence of c1, c2 > 1 attaining (3), now consider

(1) with the following choice of supply rate functions:

α1(s) =
βs2

s2 + β
, σ1(s) =

βs2

s2 + 2β
, σr1(s) = 0 (13)

α2(s)=

(

βs2

s2 + 2β

)2

, σ2(s)=

(

γβs2

γs2 + β

)2

, σr2(s) = 0. (14)

For each β ∈ (0,∞], these functions fulfill (12) if and only

if γ < 1. However, the inequality (12) is never achieved in

a uniform manner. Indeed, the gap between the functions at

both sides of (12) approaches zero as s tends to infinity for

all γ < 1. The condition (3) can be regarded as a special form

of

α−1
1 ◦(Id+ ω1)◦σ1 ◦ α−1

2 ◦ (Id+ ω2)◦σ2(s) ≤ s,

∀s∈R+ (15)

when (Id+ ωi)(s) = cis, i = 1, 2. The generalized condition

(12) allows ωi(s)’s to be nonlinear. In contrast, the earlier study

in [10], [11] imposes the uniform contraction on the loop gain,

i,e,. (Id + ωi)(s) = cis. The inequality (15) is satisfied for

(13) and (14) with nonlinear ωi(s)’s as follows:

ωi(s) = τi(s)− s, ωi ∈ P0, i = 1, 2 (16)

τ1(s) = α1 ◦ χ−1
1 (s) > s, ∀s∈(0, β)

τ2(s)=[χ2 ◦ σ−1
2 (s)]2 > s, ∀s∈(0, β2)

τ1(s) = s, ∀s≥β, τ2(s) = s, ∀s≥β2

χi(s) = α1(s)

√

√

√

√

√

s2 + β

s2 +
β

1 + ζi(γ − 1)

, ζ1 = 0.99

ζ2 = 1 .

According to a result of this paper, a smooth Lyapunov

function verifying 0-GAS can be obtained in the form of (4)

for all β ∈ (0,∞] if γ < 1. The integrands λ1(s) and λ2(s)
similar to (5)-(9) are computed by replacing (2) and ci with

(13)-(14) and τi. Even for the supply rates (13)-(14) which

never result in a loop gain of uniform contraction, we can

explicitly obtain a pair {Σ1, Σ2} whose interconnection is not

0-GAS for each β ∈ (0,∞] whenever γ ≥ 1.

III. SYSTEM DESCRIPTION

Consider the interconnected system Σ shown in Fig.1. The

subsystems Σ1 and Σ2 are connected with each other through

u1=x2 and u2=x1. The state vector of Σ is x=[xT1 , x
T
2 ]

T ∈
R

n. The signals r1 and r2 are packed into r=[rT1 , r
T
2 ]

T ∈ R
k.

The following sets of Σi’s are considered in this paper.

Definition 1: Given αi ∈ P , σi ∈ K and σri ∈ P0 for

i = 1, 2, let SV i(ni, αi, σi, σri), i = 1, 2 denote the pair of

sets containing systems Σi in the form of

ẋi = fi(t, xi, ui, ri), xi∈R
ni , ui∈R

mi , ri∈R
ki (17)

fi(t, 0, 0, 0) = 0, t ∈ R+ (18)

fi is locally Lipschitz in (xi, ui, ri)

and piecewise continuous in t (19)
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Fig. 2. Response of state variables of the system (10) and (11).

for which there exist C
1 functions Vi: R+×R

ni → R and

αi, ᾱi ∈ K∞ such that

αi(|xi|)≤Vi(t, xi)≤ ᾱi(|xi|) (20)

∂V1
∂t

+
∂V1
∂x1

f1 ≤ −α1(V1(t, x1)) + σ1(V2(t, x2))

+σr1(|r1|) (21)

∂V2
∂t

+
∂V2
∂x2

f2 ≤ −α2(V2(t, x2)) + σ2(V1(t, x1))

+σr2(|r2|) (22)

hold for all xi ∈ R
ni , ri ∈ R

ki and t ∈ R+, i = 1, 2.

The integers mi’s are supposed to satisfy m1 = n2 and

m2 = n1 so that the interconnection of Σ1 and Σ2 makes

sense. The Lipschitzness imposed on fi guarantees the exis-

tence of a unique maximal solution of Σ for locally essentially

bounded ri(t). If the exogenous signal ri is absent, the set of

systems is denoted by SV i(ni, αi, σi).

The inequalities (21) and (22) are often referred to as

“dissipation inequalities”, and their right hand sides are called

supply rates. The individual system Σi fulfilling the above

definition is said to be integral input-to-state stable (iISS) [23].

The function Vi is called a C
1 iISS Lyapunov function [2].

Under a stronger assumption αi ∈ K∞, the system Σi is said

to be input-to-state stable (ISS) [22], and the function Vi is a

C
1 ISS Lyapunov function [24]. By definition, an ISS system

is always iISS. The converse does not hold. The original notion

of iISS and ISS is given in terms of trajectories and, in the

context of time-invariant systems, is equivalent to the existence

of C1 iISS and ISS Lyapunov functions, respectively [2], [24].

As we see on the right hand side of (21) and (22), the iISS

and ISS properties we consider in this paper are uniform in

time t. Notions of non-uniform ISS are available in [18] and

references therein. Definitions of ISS for discrete-time systems

are also available in the literature, e.g., [16], [17].

Definition 2: Given αi ∈ P , σi ∈ K, σri ∈ P0 and αi, ᾱi ∈
K∞ for i = 1, 2, let Si(ni, αi, σi, σri, αi, ᾱi) denote the set

of systems Σi of the form (17), (18) and (19) which admit the

existence of a C
1 function Vi: R+×R

ni → R satisfying (20)

and

∂Vi
∂t

+
∂Vi
∂xi

fi ≤ −αi(|xi|) + σi(|ui|) + σri(|ri|) (23)

for all xi ∈ R
ni , ui ∈ R

mi , ri ∈ R
ki and t ∈ R+, i = 1, 2.

Definition 3: Let Si(ni, αi, σi, σri) denote the set of Σi

for which there exist αi, ᾱi ∈ K∞ such that Σi ∈
Si(ni, αi, σi, σri, αi, ᾱi) holds.

We write Si(ni, αi, σi) and Si(ni, αi, σi, αi, ᾱi) when we

consider ri(t) ≡ 0. Definitions 2 and 3 involve | · | to

measure the magnitude of feedback signals in the dissi-

pation inequalities. As we will see in the sequel, for the

set SV i(ni, αi, σi, σri) whose dissipation inequalities do not

involve the Euclidean norm of feedback signals, stability

criteria become simpler than those for Si(ni, αi, σi, σri) and

Si(ni, αi, σi, σri, αi, ᾱi). The set Si(ni, αi, σi, σri) in Defini-

tion 3 naturally generalizes the notion of prescribed Lp-gain

systems. By comparison, the set Si(ni, αi, σi, σri, αi, ᾱi) in

Definition 2 includes the explicit information αi, ᾱi on the

discrepancy between | · | and Vi(·), which is essential to the

analysis of 0-GAS of the interconnection.

IV. MAIN RESULTS

The following theorem provides a necessary and sufficient

condition for the uniform 0-GAS of a set of interconnected

iISS systems as shown in Fig. 1. By uniform 0-GAS, we mean

that the trivial solution of the interconnected system Σ without

external inputs r1 and r2 is uniformly GAS.

Theorem 1: Let ni be a positive integer for each i = 1, 2.

Assume that functions αi, σi : R+ → R+ , i = 1, 2 are C
1

and satisfy

αi ∈ O(> 1), σi ∈ O(> 0), i = 1, 2 (24)

αi ∈ K, i = 1, 2. (25)

Suppose that there exists some integer j ∈ {1, 2} such that

α1, α2, σ1 and σ2 satisfy

lim
s→∞

α3−j(s) ≥ lim
s→∞

σ3−j(s) (26)

and one of the following conditions

(G1) lim
s→∞

α3−j(s) = lim
s→∞

σ3−j(s)
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(G2) lim
s→∞

σj ◦ α−1
3−j◦ σ3−j(s)

αj(s)
6= 1 .

Then, the interconnected system Σ is uniformly 0-GAS for all

pairs Σi ∈ SV i(ni, αi, σi), i = 1, 2 if and only if

α−1
j ◦ σj ◦ α−1

3−j◦ σ3−j(s) < s, ∀s ∈ (0,∞) (27)

holds for the above j. Furthermore, a Lyapunov function of Σ
characterizing the uniform 0-GAS is given as

Vcl(t, x) =

∫ V1(t,x1)

0

λ1(s)ds+

∫ V2(t,x2)

0

λ2(s)ds (28)

for some non-decreasing continuous functions λ1, λ2 : R+ →
R+ satisfying

λ1(s) > 0, λ2(s) > 0, s ∈ (0,∞) . (29)

It is emphasized that j in (27) is the same as in any of (G1)-

(G2). The properties (25) and (26) are assumed beforehand

only for simplicity of expressions. Their necessity will be

proven in Theorem 4 and Theorem 5 of Section V. It is stressed

that (G1)-(G2) are not simultaneous constraints. Only one of

them is required. Let the inequality (27) be referred to as a

small-gain condition. It is mentioned here that the uniform

0-GAS in Theorem 1 is derived from

∃αcl∈P s.t. V̇cl(t, x) ≤ −αcl(|x|), ∀x ∈ R
n (30)

satisfied along the trajectories of the interconnected system Σ
with ri(t) ≡ 0, i = 1, 2.

One can obtain iISS of a set of interconnected systems if

amplification factors ωi, i = 1, 2, are introduced to the small-

gain condition. A stronger property, ISS, is a special case.

Theorem 2: Assume that functions αi, σi, σri, αi, ᾱi :
R+ → R+ , i = 1, 2 satisfy (25). Suppose that there exists

some integer j ∈ {1, 2} such that one of the following

conditions

(H1) lim
s→∞

α1(s) = ∞ ∧ lim
s→∞

α2(s) = ∞
(H2) lim

s→∞
α3−j(s) = ∞ ∧ lim

s→∞
σ3−j(s) <∞

(H3) lim
s→∞

σ1(s) <∞ ∧ lim
s→∞

σ2(s) <∞
is satisfied. Then, the interconnected system Σ is iISS

with respect to input r and state x for all pairs

Si(ni, αi, σi, σri, αi, ᾱi) with any positive integer ni, i = 1, 2
if there exist ωi ∈ K∞, i = 1, 2 such that

α−1
j ◦ ᾱj ◦ α−1

j ◦ (Id+ ωj) ◦ σj
◦α−1

3−j◦ ᾱ3−j ◦ α−1
3−j◦ (Id+ ω3−j) ◦ σ3−j(s) ≤ s ,

∀s ∈ R+ (31)

holds for the above j. Furthermore, an iISS Lyapunov function

of Σ is given as in (28) for some non-decreasing continuous

functions λ1, λ2 : R+ → R+ satisfying (29). In the case of

(H1), the function Vcl is also an ISS Lyapunov function.

Note that the inverses of αj and α3−j in (27) and (31) are

not necessarily well defined over R+. Instead, the fulfillment

of (27) and (31) only requires the whole composite function

on the left hand side of the inequality to be finite for finite

s. Thus, lims→∞ αj(s)≥ lims→∞ σj(s) is not necessary. The

statement about a Lyapunov function in Theorem 2 claims that

∃αcl∈P, σcl∈P0 s.t.

V̇cl(t, x) ≤ −αcl(|x|) + σcl(|r|), ∀x ∈ R
n, r ∈ R

k (32)

is satisfied along the trajectories of Σ. Since the above theorem

only addresses the sufficiency of a small-gain condition for

the stability, neither (24) nor the smoothness of αi and σi is

required. It is stressed that j in (31) is the same as in (H2). It

can be verified that

(G1) ∨ (G2) ⇐ (H1) ∨ (H2) ∨ (H3) ⇐ (H1)

holds under the assumption that there exist ω1, ω2 ∈ K∞

satisfying (31).

Theorem 3: Let ni be a positive integer for each i = 1, 2.

Assume that functions αi, σi, σri : R+ → R+ , i = 1, 2 are

C
1 and satisfy (24), (25), (H1) and

σri ∈ K∞, i = 1, 2 . (33)

Then, the interconnected system Σ is ISS with respect to input

r and state x for all pairs SV i(ni, αi, σi, σri), i = 1, 2 if and

only if there exist ωi ∈ K∞, i = 1, 2 such that

α−1
1 ◦ (Id+ ω1) ◦ σ1 ◦ α−1

2 ◦ (Id+ ω2) ◦ σ2(s) ≤ s ,

∀s ∈ R+ (34)

holds. Furthermore, an ISS Lyapunov function of Σ is given as

in (28) for some non-decreasing continuous functions λ1, λ2 :
R+ → R+ satisfying (29).

Theorem 3 indicates that there exists αcl ∈ K∞ achieving

(32). In contrast to Theorem 2 stated with σri ∈ P0, Theorem

3 considers (33) which is narrower than P0. The assumption

(33) is only for obtaining the “only if” part of Theorem 3. If

the exogenous signals affect systems through sufficiently small

σri 6∈ K∞, the condition (34) is not always required, while

(27) is necessary. For sufficiently small σr1 and σr2, none of

(H1), (H2) and (H3) is necessary (See Section VI-A).

It is stressed that (31) with j = 1 is not equivalent to (31)

with j = 2 in general. The same remark applies to (27). The

j = 1 case in (31) implies the j = 2 case if

lim
s→∞

α1(s) = ∞ ∨ lim
s→∞

α1(s) > lim
s→∞

σ1(s) . (35)

Thus, the condition (31) is symmetric in terms of j = 1 and

j = 2 when Σ1 and Σ2 are individually ISS with respect to

the interacting inputs. When iISS subsystems are involved, we

need to select j ∈ {1, 2} or interchange Σ1 and Σ2 so that

(31) or (27) can be fulfilled. Theorem 4 in Section V explains

why the condition should be asymmetric.

Combining the results in Sections V and VI proves the

theorems in this section.

Remark 1: In the case of (H1), the inequalities (31) and

(34) are in accordance with the nonlinear small-gain condition

proposed by [15] when the gains of individual subsystems

are computed from differential dissipation inequalities, i.e., αi

and σi. The nonlinear small-gain condition was originally a

sufficient condition for stability of interconnected ISS systems.

This paper unifies the treatment of iISS and ISS systems. Note

again that (24) and the smoothness of αi and σi are needed

only for the necessity part. The slight difference between (31)

and (34) arises from the difference of Si and SV i as mentioned

at the end of Section III.

Remark 2: In contrast to an earlier result of the first author

[11], theorems in this paper do not require the small-gain
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conditions to be uniform contraction over R+. In other words,

linearity is not imposed on the amplification factors ωi(s),
i = 1, 2, in the small-gain conditions of (31) and (34). This

comment also applies to (27) in view of the existence of ωi.

This paper demonstrates that the uniformity assumption on

the small-gain conditions, i.e., restricting ωi(s) to (ci − 1)s
for a constant ci > 1, in [11] can be removed in the explicit

construction of smooth Lyapunov functions.

Remark 3: The small-gain condition (31) is simpler and

less restrictive than the small-gain condition proposed in [11].

Indeed, the small-gain-like condition in [11] for iISS systems

is given as the existence of k > 0 and c1, c2 > 1 satisfying

max
w∈[0,s]

[cjσj ◦ α−1
3−j ◦ ᾱ3−j ◦ α−1

3−j◦ c3−jσ3−j(w)]
k

σ3−j(w)

≤
[αj ◦ ᾱ−1

j ◦ αj(s)]
k

σ3−j(s)
, ∀s∈R+ (36)

under the assumption of

lim
s→∞

α3−j(s) = ∞∨
{ lim
s→∞

α3−j(s) > lim
s→∞

σ3−j(s) ∧ lim
s→∞

σj(s) <∞}.(37)

In contrast, this paper proves that the single small-gain con-

dition (31) applies to ISS systems and iISS systems equally.

The existence of k > 0 and c1, c2 > 1 fulfilling (36) implies

(31) with s+ωi(s) = cis. On the other hand, the existence of

k > 0 and c1, c2 > 1 fulfilling (36) is not guaranteed even if

(31) is satisfied with linear ωi’s. For example, the following

functions:

αi = ᾱi, i = 1, 2

α1(s) =
3s

2(s+ 1)
, σ1(s) = s

α2(s) =







0 , s = 0

s
1
s , 0 < s ≤ 1

s , 1 < s

σ2(s) =







0 , s = 0

1

2

(

s

s+ 1

)

s+1

s

, s > 0

satisfy the condition (31) as

3

2
σ1 ◦ α−1

2 ◦ 3

2
σ2(s) ≤ α1(s), ∀s ∈ R+ .

It can be, however, verified that

lim
s→0+

[c1σ1 ◦ α−1
2 ◦ c2σ2(s)]k
σ2(s)

= lim
s→0+

ck1c2s
(k− 1

s ) = ∞, ∀k > 0

holds. Since the left hand side of (36) is not finite for all k,

there are no c1, c2 > 1 satisfying (36). Hence, the previous

result (36) is more restrictive than (31) even when (31) is

used with linear ω’s. Moreover, under (36), the situation (37)

is covered completely by (H1) ∨ (H2) ∨ (H3).

Remark 4: All the theorems given above use a single pair

of continuous functions {λ1(s), λ2(s)} to generate Lyapunov

functions Vcl, which will be shown explicitly in Section VI.

Hence, a common form of Lyapunov functions can be used

for both iISS and ISS systems. This unification of Lyapunov

functions for iISS and ISS systems is a novelty of this paper.

The previous study [11] employs a Lyapunov function for iISS

systems which is different from that for ISS systems.

Remark 5: The constraint (G1) ∨ (G2) is not a technical

assumption. Consider

α1(s)=
s

1 + s
, σ1(s)=s, σ2(s)=α2

(

s2

1 + s+ s2

)

(38)

α2(s) =







23−p(p− 2)s3

+22−p(3− p)s2 , s ∈ [0, 1/2)

sp , s ∈ [1/2,∞) .

(39)

These class K functions are C
1, and satisfy αi ∈ O(> 1) and

σi ∈ O(> 0) for 0 < p ≤ 3. Define

ẋ1 = −α1(x1) + σ1(x2) (40)

ẋ2 = −α2(x2) + σ2(x1) (41)

V1 = x1, V2 = x2 (42)

for the non-negative initial conditions (x1(0), x2(0)) ∈ R
2
+.

Due to αi, σi ∈ K, the set R
2
+ is positively invariant.

Therefore, V1 = x1 and V2 = x2 are positive definite and

C
1 on R

2
+ where x(t) evolves, and satisfy (21) and (22).

The interconnected system (40)-(41) belongs to the class of

positive systems which are popular in biological and chemical

processes. This system (40)-(41) has unbounded trajectories

in the case of 0 < p < 1 [1]. However, αi, σi, i = 1, 2, in

(38) and (39) satisfy (27) with j = 1. Indeed, the functions

are one of the cases where ¬(G1) ∧ ¬(G2) is fulfilled. Thus,

the assumption cannot be eliminated from Theorem 1.

Remark 6: In Theorems 1 and 3, the pair Si(ni, αi, σi, σri),
i = 1, 2 can replace SV i(ni, αi, σi, σri), i = 1, 2 if αi = ᾱi

holds for i = 1, 2.

Remark 7: The “only if” part of Theorem 1 does not need

the assumption (G1) ∨ (G2). In other words, there always

exists a pair of Σi, i = 1, 2 such that their interconnection is

not 0-GAS when (27) is violated.

V. NECESSITY

The issue of the necessity of stability criteria is important

from the perspective of estimating stability margins for uncer-

tain systems as well as the tightness of the stability criteria.

A. Destabilizing Perturbation

The following is a new technique to construct destabilizing

perturbations, which is the key to the proof of the necessity

in Theorems 1 and 3.

Lemma 1: Suppose that C1 functions α ∈ P , σ ∈ K, real

numbers δ ≥ 0, ǭ > 0 and integers n > 0, m > 0 are

given. Assume that α and σ belong to O(> 1) and O(> 0),
respectively. Then, there exist a locally Lipschitz function f :

R
n × R

m → R, a C
1 function V : R

n → R , class K∞
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functions α, ᾱ and a real number ǫ ∈ [0, ǭ] such that

f(0, 0) = 0 (43)

α(|x|) = V (x) = ᾱ(|x|) (44)

∂V

∂x
f(x, u) ≤ −α(|x|) + σ(|u|), ∀x ∈ R

n, u ∈ R
m (45)

(1 + δ)α(|x|) < σ(|u|)
ǫ ≤ |u|

}

⇒ ∂V

∂x
f(x, u) > δα(|x|) . (46)

The proof of this lemma given in Appendix A is constructive.

The functions fi, i = 1, 2, in Section II are constructed by

using this technique, so that the interconnected system Σ
composed of Σ1 and Σ2 in (10) and (11) becomes unstable in

the case of γ ≥ 1.

Remark 8: When (1/N) + (1/J) < 1, α ∈ O(N) and

σ ∈ O(J) are satisfied, the claim in Lemma 1 still holds for

ǭ = 0.

Remark 9: The function f(x, u) constructed in the proof of

Lemma 1 satisfies

fi(x, u)|xi=0 = 0, i = 1, 2, . . . , n ,

where f = [f1, f2, ..., fn]
T . This implies that each i-th scalar

component of the solution vector x(t) ∈ R
n of the differential

equation ẋ = f(x, u) never changes signs, namely, for each

i = 1, 2, . . . , n,

xi(0) ≥ 0 ⇒ xi(t) ≥ 0, ∀t ∈ R+

holds. For such a positive system defined for initial conditions

in the non-negative orthant, the C
1 function V (x) needs to

be defined on only R
n
+. Since V (x) = |x| becomes eligible,

Lemma 1 allows α ∈ O(1) when one’s attention is restricted to

positive systems. Finally, it can be verified that all the results

in this paper hold even for the interconnection of subsystems

evolving on R
ni

+ .

Remark 10: For linear uncertain systems, the techniques

for proving the necessity of small-gain conditions are widely

known, and consist of constructing a destabilizing pertur-

bation(or a particular uncertain system) whenever a linear

small-gain condition is violated. Unfortunately, the popular

linear approach does not allow us to select the order of the

destabilizing system [6], [28], and it requires the notion of

output. The minimal order is in general the sum of dimension

of input and output vectors, and the order is larger than the

output dimension of the destabilizing perturbation. On the

other hand, the technique proposed in Lemma 1 not only

enables us to deal with nonlinear gains, but also allows us

to choose the order of the destabilizing system arbitrarily. For

instance, a destabilizing perturbation can be given by a system

of dimension one making use of nonlinearities. Furthermore,

providing a Lyapunov characterization of the destabilizing

system is a notable feature of the proposed technique.

B. Necessary Conditions

Using Lemma 1, we can derive necessary conditions for

the stability of the interconnected system Σ shown in Fig.1.

The following addresses the existence of an integer j ∈ {1, 2}
satisfying (26) which is required in all developments in this

paper.

Theorem 4: Let ni be a positive integer for each i = 1, 2.

Assume that functions αi, σi, σri : R+ → R+ are C
1, and

satisfy

αi ∈ O(> 1), σi, σri ∈ O(> 0), i = 1, 2 . (47)

Then, for the pair

Si = {Σi ∈ Si(ni, αi, σi, σri) :

fi(t, xi, ui, ri) = fi(0, xi, ui, ri), ∀t∈R+} ,
i = 1, 2 (48)

and the pair

Si = {Σi ∈ SV i(ni, αi, σi, σri) :

fi(t, xi, ui, ri) = fi(0, xi, ui, ri), ∀t∈R+} ,
i = 1, 2 (49)

the following facts hold.

(i) The interconnected system Σ is 0-GAS for all Σi ∈ Si,

i = 1, 2, only if

lim inf
s→∞

αi(s) ≥ lim
s→∞

σi(s) (50)

holds for at least one of i = 1, 2.

(ii) The interconnected system Σ is ISS with respect to input

r and state x for all Σi ∈ Si, i = 1, 2, only if

lim inf
s→∞

αi(s) ≥ lim
s→∞

σi(s) + sup
s∈R+

σri(s) (51)

holds for at least one of i = 1, 2.

The necessary condition (51) and (33) justify either of

the two requirements in (H1) of Theorem 3. The use of

the sets (48) and (49) illustrates that the necessity holds

for sets of time-invariant systems which are narrower than

Si(ni, αi, σi, σri) and SV i(ni, αi, σi, σri), respectively. Note

that (50) is also necessary for iISS of Σ since iISS implies 0-

GAS. The property (51) indicates that Σi is ISS with respect

to input (ui, ri) and state xi if σri ∈ K. The property (50)

implies that Σi is ISS with respect to input ui and state xi. It

is worth noting that lim sups→∞ σri(s) <∞ is not necessary

for the iISS property of the interconnected system Σ even if

lim infs→∞ αi(s) <∞. This fact can be understood naturally.

In fact, a system is iISS if and only if it is 0-GAS and zero-

output smoothly dissipative [2].

On the basis of this result, we can establish the necessity

of the small-gain condition.

Theorem 5: Let ni be a positive integer for each i = 1, 2.

Assume that functions αi, σi, σri : R+ → R+ are C
1, and

satisfy (47). Suppose

lim inf
s→∞

α2(s) = ∞ ∨
{

lim inf
s→∞

α2(s) ≥ lim
s→∞

σ2(s) if 2 6∈ D

lim inf
s→∞

α2(s) > lim
s→∞

σ2(s) if 2 ∈ D
(52)

holds, where D := {i ∈ {1, 2} : σri ∈ K∞}. Then, the follow-

ing facts hold for the pairs S1, S2 defined in (48) and (49).
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(i) The interconnected system Σ is 0-GAS for all Σi ∈ Si,

i = 1, 2 only if there exist α̃i ∈ K, i = 1, 2, such that

α̃−1
1 ◦ σ1 ◦ α̃−1

2 ◦ σ2(s) < s ∀s ∈ (0,∞) (53)

α̃i(s) ≤ αi(s), ∀s ∈ R+ . (54)

(ii) The interconnected system Σ is ISS with respect to input

r and state x for all Σi ∈ Si, i = 1, 2 only if there exist

ωi

{

∈ K∞ if i ∈ D

= 0 if i 6∈ D
(55)

and α̃i ∈ K for i = 1, 2 such that

α̃−1
1 ◦ (Id+ ω1) ◦ σ1 ◦ α̃−1

2 ◦ (Id+ ω2) ◦ σ2(s) ≤ s ,

∀s ∈ R+ (56)

and (54) are satisfied.

Note that we can take α̃i = αi if αi is of class K. Theorem 5

suggests that we can assume αi ∈ K, i = 1, 2, without loss of

generality in the stability analysis. The next lemma indicates

that the assumption of αi ∈ O(> 1) and σi ∈ O(> 0) is

reasonable.

Lemma 2: For ni > 0, the following holds.

(i) If ∂Vi/∂xi and ∂Vi/∂t are Hölder continuous of some

order a > 0 and b > 1, respectively, in xi at xi = 0,

then Si(ni, αi, σi) 6= ∅ implies αi ∈ O(> 1).
(ii) For each Σi ∈ Si(ni, αi, σi), there exists σ̂i ∈ K

such that σ̂i ∈ O(> 0) and Σi ∈ Si(ni, αi, σ̂i) ⊆
Si(ni, αi, σi) holds.

C. Discussions

The ISS property of a subsystem Σi with respect to its

feedback input ui and its state xi is not necessary for 0-GAS

if the specific differential equations describing Σ1 and Σ2 are

given instead of merely dissipation inequalities.

Fact 1: There exists a pair of iISS subsystems Σ1 and Σ2

fulfilling the following simultaneously.

(i) Each Σi, i = 1, 2, is not ISS.

(ii) The interconnected system Σ is uniformly 0-GAS.

This fact can be confirmed by

Σ1 : ẋ1 = −sat(x1) + x2 (57)

Σ2 : ẋ2 = −sat(x2)− x1 . (58)

The 0-GAS of this interconnection follows from Vcl = x21+x
2
2.

Although Vi = log(1 + x2i ) proves that each Σi is iISS

with respect to state xi and input x3−i, the two subsystems

are not ISS. The stability property (ii) of Σ in Fact 1 can

be even strengthened to ISS by adding +x1r1/(1 + x21) and

+x2r2/(1 + x22) to (57) and (58), respectively. In contrast,

Theorem 4 has demonstrated that the ISS property is necessary

in the situation where the information of only dissipation

inequalities is available.

Angeli and Astolfi [1] have pointed out that asymptotic

stability of a feedback system is not always detected by means

of gain conditions alone. Indeed, the small-gain constraint (53)

is not necessary if both subsystems are specified directly by

differential equations of state variables. Theorem 5 claims

the necessity only when the two systems are allowed to

be uncertain as long as each subsystem satisfies a given

dissipation inequality. In fact, the aforementioned example

illustrating Fact 1 violates (53) clearly since two subsystems

are only iISS.

An interesting question is whether the small-gain condition

is necessary when one of the two subsystems is given and

fixed by a differential equation. Unfortunately, for nonlinear

systems, the answer is in general negative. The necessity

property of the small-gain condition is very delicate due to

the diversity of system nonlinearities and supply rates or gain

functions to be chosen. The situation is illustrated by the

following fact.

Fact 2: There exist a subsystem Σ2, functions α1 ∈ P
and α2, σ1, σ2 ∈ K such that the following is fulfilled

simultaneously.

(i) Σ2 ∈ S2(n2, α2, σ2) holds.

(ii) Σ2 6∈ S2(n2, α2, µσ2) holds for all µ < 1.

(iii) The interconnected system Σ is is uniformly 0-GAS for

all Σ1 ∈ S1(n1, α1, σ1) for all integer n1 > 0.

(iv) There exists s ∈ (0,∞) for which it holds that

σ1 ◦ α−1
2 ◦ σ2(s) ≥ α1(s) . (59)

This fact suggests that the small-gain condition is not necessar-

ily satisfied when one does not want stability for “all” elements

in prescribed sets of systems. One example explaining this fact

is

α1(s) =
s2

s2 + 1
, σ1(s) =

s2

2
(60)

α2(s) = s2, σ2(s) = s2 . (61)

Consider a particular model of Σ2 given by

Σ2 : ẋ2 = −x2 +
x1

x21 + 1
(62)

which satisfies Σ2 ∈ S2(1, α2, σ2) for V2(x2) = x22. For

the system Σ1, we only pay attention to the set Σ1 ∈
S1(n1, α1, σ1) instead of a particular element. Define V (x) =
V1(x1) + cV2(x2). Then,

V̇ ≤ −(1− c)
x21

(x21 + 1)2
−
(

c− 1

2

)

x22

is obtained. This inequality with c = 3/4 proves the uni-

form 0-GAS of the interconnected system Σ. The small-gain

condition (53) is, however, violated for (60) and (61) since

σ1 ◦α−1
2 ◦σ2(s) = s2/2 implies σ1 ◦α−1

2 ◦σ2(s) ≥ α1(s) for

s ∈ [1,∞). The stability is established without the small-gain

condition since Σ2 is fixed at a particular element in the set.

The system (62) is on the boundary of the set S2(1, α2, σ2),
where the boundary is defined by the product of (i) and

(ii). The property (ii) can be verified for (62) via Jacobian

linearization. However, the time-derivative of V2 is bounded

conservatively from above in shape by σ2(s) toward s→ ∞.

In fact, the system (62) is on the boundary only in the sense

of the maximum magnitude. We can strengthen (iii) of Fact 2

to iISS by adding +x2r2/(x
2
2 + 1) to (62).

The situation becomes different for supply rates fitting

systems tightly such as linear systems with quadratic supply
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rates. Consider a linearized version of the above example, let

(62) be replaced with

Σ2 : ẋ2 = −x2 + x1 (63)

which satisfies (i) and (ii) of Fact 2 with respect to (61) and

n2 = 1. Define a set S1(1, α1, σ1) with

α1(s) = s2, σ1(s) = γs2 (64)

for Σ1 The interconnection of Σ1 and Σ2 is not 0-GAS if

Σ1 is ẋ1 = −x1 + x2 which satisfies Σ1 ∈ S1(1, α1, σ1) for

γ = 1. Thus, the interconnected system defined with (63) is

uniformly 0-GAS for all Σ1 ∈ S1(n1, α1, σ1) with an arbitrary

integer n1 > 0 if and only if γ < 1. On the other hand, the

condition (59) is identical to γ ≥ 1 for (64) and (61). In this

way, the properties (iii) and (iv) cannot be achieved since the

linear system Σ2 in (63) is covered tightly by S2(1, α2, σ2)
with the quadratic supply rate (61) which represents a linear

gain.

These two examples suggest that the small-gain condition

is not necessary for the stability of nonlinear interconnected

systems if the supply rate fits the subsystem Σ2 only in the

maximum magnitude. A supply rate bounds an element Σ2 in

a very conservative way if the nonlinearity of Σ2 is far from

the shape of {α2,σ2}. It is natural that, in order to obtain

the necessity of the small-gain condition, we need to estimate

Σ2 with {α2,σ2} tightly in terms of the shape. The following

explains this idea.

Proposition 1: Suppose that α1 ∈ P and α2, σ1, σ2 ∈ K are

given, and that lims→∞ α2(s) ≥ lims→∞ σ2(s), α2 ∈ O(> 1)
and σ2 ∈ O(> 0) hold. Assume that Σ2 is a system satisfying

(i) Σ2 ∈ S2(n2, α2, σ2) holds.

(ii) There exist a C
1 function V2: R

n → R , class K∞

functions α2, ᾱ2 and a positive number l1 such that

α2(|x2|) = V2(x2) = ᾱ2(|x2|) (65)

|x1| ≥ l1
|x2| = α−1

2 ◦ σ2(l1)

}

⇒ ∂V2
∂x2

f2(t, x2, x1) ≥ 0 (66)

σ1 ◦ α−1
2 ◦ σ2(l1) ≥ α1(l1) (67)

Then, for each integer n1 > 0, there exists a system Σ1 ∈
S1(n1, α1, σ1) for which the interconnected system Σ is not

0-GAS.

This proposition follows directly from the proof of Theorem

5. The requirement (66) implies that the pair {α2, σ2} fit

tightly Σ2 in shape as well as the maximum magnitude.

VI. SUFFICIENCY

In this section, the sufficiency of the stability criteria pre-

sented in Section IV is derived. This section gives a pair of

{λ1, λ2} with which the composite Lyapunov function Vcl in

(28) fulfills (30) and (32).

A. A common form of Lyapunov function

Consider the set of the quadruplets (α1, α2, σ1, σ2) satisfy-

ing

α1, α2, σ1, σ2 ∈ K, (68)

lim
s→∞

α2(s) ≥ lim
s→∞

σ2(s) . (69)

Define the following seven situations for (α1, α2, σ1, σ2):

(M1) lim
s→∞

σ1◦α−1
2 ◦ᾱ2◦α−1

2 ◦σ2(s)
α1 ◦ ᾱ−1

1 ◦α1(s)
≤ 1

∧ lim
s→∞

α2(s) = lim
s→∞

σ2(s)

(M2) lim
s→∞

σ1◦α−1
2 ◦ᾱ2◦α−1

2 ◦σ2(s)
α1 ◦ ᾱ−1

1 ◦α1(s)
< 1

∧ lim
s→∞

α2(s) > lim
s→∞

σ2(s)

(M3) lim
s→∞

σ1◦α−1
2 ◦ᾱ2◦α−1

2 ◦σ2(s)
α1 ◦ ᾱ−1

1 ◦α1(s)
= 1

∧ lim
s→∞

α2(s) > lim
s→∞

σ2(s)

(J1) lim
s→∞

α2(s) = ∞ ∧ lim
s→∞

α1(s) = ∞
(J2) lim

s→∞
α2(s) = ∞ ∧ lim

s→∞
σ2(s) <∞

(J3) lim
s→∞

σ1(s) <∞ ∧ lim
s→∞

σ2(s) <∞
(J4) ∃k ∈ {1, 2} s.t.

{ lim
s→∞

αk(s) <∞ ∧ lim
s→∞

σ3−k(s) = ∞}
The pair of {λ1, λ2} for the Lyapunov function Vcl can be

constructed from the functions in the small-gain conditions

(27), (31) and (34). The following lemma can be verified

straightforwardly, which provides the functions to be used in

{λ1, λ2} directly.

Lemma 3: Assume that

α−1
1 ◦ ᾱ1 ◦ α−1

1 ◦ σ1 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ σ2(s) < s ,

∀s ∈ (0,∞) (70)

holds for a pair αi, ᾱi ∈ K∞ and a quadruplet (α1, α2, σ1, σ2)
satisfying (68), (69) and (M1) ∨ (M2). Then, there exist

α̂1, σ̂1 ∈ K, ω̂1, ω̂2 ∈ P0 and τ̂1, τ̂2 ∈ K∞ such that

(Id+ ω̂1) ◦ σ̂1 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ (Id+ ω̂2) ◦ σ2(s)
≤ α̂1 ◦ ᾱ−1

1 ◦ α1(s), ∀s∈R+ (71)

σ1(s) ≤ σ̂1(s), α̂1(s) ≤ α1(s), ∀s ∈ R+ (72)

lim
s→∞

σ̂1(s) ≥ lim
s→∞

α̂1(s) (73)

lim
s→∞

α2(s) = ∞ ⇒ α̂1 = α1 (74)

lim
s→∞

α2(s) <∞ ⇒ σ̂1 = σ1 (75)

lim
s→∞

α2(s) > lim
s→∞

σ2(s) ⇒










lim
s→∞

α2(s) > lim
s→∞

(Id+ ω̂2) ◦ σ2(s)
lim
s→∞

σ̂1(s) > lim
s→∞

α̂1(s)

ω̂1, ω̂2 ∈ K
(76)

lim
s→∞

α2(s) = lim
s→∞

σ2(s) ⇒










lim
s→∞

α2(s) ≥ lim
s→∞

(Id+ ω̂2) ◦ σ2(s)
lim
s→∞

(Id+ ω̂1) ◦ σ̂1(s) = lim
s→∞

α̂1(s)

ω̂1 ◦ σ̂1(s) > 0, ω̂2 ◦ σ2(s) > 0, ∀s ∈ (0,∞)

(77)

τ̂i = Id+ ω̂i, i = 1, 2 . (78)

Furthermore, the claim can be fulfilled by ω̂1, ω̂2 ∈ K∞ if

there exist ω1, ω2 ∈ K∞ such that

α−1
1 ◦ ᾱ−1

1 ◦ α1 ◦ (Id+ ω1) ◦ σ1
◦α−1

2 ◦ ᾱ2 ◦ α−1
2 ◦ (Id+ ω2) ◦ σ2(s) ≤ s,

∀s ∈ R+ (79)
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is satisfied under the assumption of

lim
s→∞

α2(s) = ∞ ∨ lim
s→∞

α2(s) > lim
s→∞

σ2(s) . (80)

Using the functions given in Lemma 3 and L :=
lims→∞ σ̂1(s), we define continuous functions λ1, λ2 : R+ →
R+ as

λ1(s) :=
[

δ2 ◦ ω̂2 ◦ τ̂−1
2 ◦ α2 ◦ ᾱ−1

2 ◦ α2 ◦ σ̂−1
1 ◦ τ−1

1 ◦ α̂1

◦ ᾱ−1
1 (s)

] [

ν◦τ−1
1 ◦ α̂1 ◦ ᾱ−1

1 (s)
]

·
[

ψ◦τ−1
1 ◦α̂1◦ᾱ−1

1 (s)
]

(81)

λ2(s) := σ̂1 ◦ α−1
2 (s)

[

ν ◦ σ̂1 ◦ α−1
2 (s)

]

·
[

ψ ◦ σ̂1 ◦ α−1
2 (s)

]

, (82)

where δi and τ1 are any class K∞ functions satisfying

Id− δi ∈ K∞, i = 1, 2 (83)

τ1 = Id+ kω̂1 (84)

for some k ∈ (0, 1), and ν, ψ : (0, L) → R+ are any

continuous functions which satisfy

0 < ν(s) <∞, 0 < ψ(s) <∞, ∀s ∈ (0, L) (85)

and fulfill

[

δ2 ◦ ω̂2 ◦ τ̂−1
2 ◦α2 ◦ ᾱ−1

2 ◦ α2(s)
]

· [ν ◦ σ̂1(s)] [ψ ◦ σ̂1(s)] : non-decreasing (86)

σ̂1(s) [ν ◦ σ̂1(s)] [ψ ◦ σ̂1(s)] : non-decreasing (87)
[

δ2 ◦ ω̂2 ◦ τ̂−1
2 ◦α2 ◦ ᾱ−1

2 ◦ α2 ◦ σ̂−1
1 ◦τ−1

1 ◦ α̂1 ◦ ᾱ−1
1 (s)

]

·
[

ν ◦τ−1
1 ◦ α̂1 ◦ ᾱ−1

1 (s)
]

: non-decreasing (88)
[

ψ ◦ σ̂1 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ τ̂2 ◦ σ2(s)
]

·
[

σ̂1 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ τ̂2 ◦ σ2(s)
]

σ2(s)

≤
[

ψ ◦ τ−1
1 ◦ α̂1 ◦ ᾱ−1

1 ◦ α1(s)
]

[δ2 ◦ ω̂2 ◦ σ2(s)]
·
[

δ1◦ kω̂1 ◦ τ−1
1 ◦ α̂1 ◦ ᾱ−1

1 ◦ α1(s)
]

(89)

for all s ∈ R+. Note that τ1 ∈ K∞ holds since s+ kω̂1(s) =
k(s+ ω̂1(s)) + (1− k)s and τ̂1 ∈ K∞.

The following demonstrates that the pair of {λ1, λ2} in

(81) and (82) yields a Lyapunov function Vcl establishing the

0-GAS, iISS and ISS of the interconnected system Σ under

appropriate small-gain conditions.

Theorem 6: Consider σr1, σr2 ∈ P0, a quadruplet

(α1, α2, σ1, σ2) satisfying (68) and (69), and Vi : (t, xi) ∈
R+ × R

ni → R+, i = 1, 2, satisfying (20) for some αi,

ᾱi ∈ K∞. Then, we have the following.

(i) Suppose that σr1(s) ≡ 0, σr2(s) ≡ 0 and (M1) ∨ (M2)

hold. If (70) is satisfied, the functions (81) and (82)

satisfy

2
∑

i=1

λi(Vi(t, xi)) {−αi(|xi|)+σi(|ui|)+σri(|ri|)}

≤
2
∑

i=1

−αcl,i(|xi|) + σcl,i(|ri|),

∀x1∈R
n1, x2∈R

n2, r1∈R
m1, r2∈R

m2, t∈R+(90)

for some αcl,1, αcl,2∈P and σcl,1(s) = σcl,2(s) ≡ 0.

(ii) Suppose that (J1) ∨ (J2) ∨ (J3) and

L <∞ ⇒ lim
s→L

ν(s) <∞, lim
s→L

ψ(s) <∞ (91)

hold. If there exist ωi ∈ K∞, i = 1, 2 such that

(79) is satisfied, the functions (81) and (82) with ω̂1,

ω̂2 ∈ K∞ satisfy (90) for some αcl,1, αcl,2∈K and some

σcl,1, σcl,2∈P0 fulfilling

α1, α2 ∈ K∞ ⇒ αcl,1, αcl,2 ∈ K∞ (92)

σr,i(s) ≡ 0 ⇒ σcl,i(s) ≡ 0 . (93)

There always exist functions ν and ψ fulfilling (85), (86),

(87), (88), (89) and (91). The existence and the construction

are addressed in Subsection VI-B. The task of finding a pair

{λ1, λ2} which solves (90) is referred to as a state-dependent

scaling problem in [11]. In Theorem 6 (ii), the property (90)

resulting in (32) yields the iISS of the interconnected system

Σ. Theorem 6 (i) demonstrates that the amplification factors

ω1, ω2 in the small-gain condition (79) can be replaced by a

strict inequality sign as far as 0-GAS is concerned. Note that

the existence of ω1, ω2 ∈ K∞ achieving (79) implies not only

(70), but also (M1) ∨ (M2).

Remark 11: When ω1 and ω2 are restricted to linear func-

tions, the functions in (81) and (82) reduce to the ones given

in [11] derived for the ISS case α1(∞) = α2(∞) = ∞ (See

also Remark 13). The previous iISS result in [11] not only

is limited to linear ωi’s, but also is based on a pair of λ1
and λ2 different from the ISS case. There has been a gap

between the two Lyapunov functions which deal with iISS

and ISS separately. The iISS Lyapunov function given in [11]

for linear ωi’s can be obtained from (81)-(82) with

ν(s) =
λ̃2 ◦ α2 ◦ σ̂−1

1 (s)

sψ(s)
,

where λ̃2 denotes the function λ2 derived in [11], and δi’s are

restricted to linear functions. The pair (81)-(82) unifies the

treatment of iISS and ISS systems, and includes all solutions

given in the previous study [11] and covers non-linear ωi’s.

Moreover, Theorem 6 (i) shows that the Lyapunov function

(28) with (81) and (82) can also establish 0-GAS with ωi’s

which are not necessarily positive definite. See Remark 3 for

the benefit of (81) and (82) in terms of the less restrictive

small-gain condition.

In order to understand the idea of the assumption (M1) ∨
(M2) for 0-GAS and the assumption (J1) ∨ (J2) ∨ (J3) for

iISS, the following lemma is useful.

Lemma 4: Given αi, ᾱi ∈ K∞, i = 1, 2, the following

propositions hold true for each quadruplet (α1, α2, σ1, σ2)
satisfying (68), (69):

{ (M1) ∨ (M2) } ⇔ ¬(M3)

{ (J1) ∨ (J2) ∨ (J3) } ⇔ ¬(J4) .

The case of (J4) allows ∞ = lim sups→∞ σrk(s) >
lims→∞ αk(s). Notice that ∞ = lim sups→∞ σrk(s) implies

the unbounded influence of rk on Σk. In this situation, (J4)

implies that the underdamped state xk of Σk affects Σ3−k

through the unbounded function σ3−k. If the influence of

rk is small enough, we can still obtain iISS of Σ in the
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case of (J4). In fact, there exists ǫ > 0 for which we can

obtain αcl,1, αcl,2 ∈K and σcl,1, σcl,2 ∈P0 if (79) holds with

ω1, ω2 ∈ K∞ and lims→∞ σrk(s) ≤ ǫ.
Remark 12: The situation (M3) is referred to as the no

gap case in [1] which considers the interconnected system

Σ without any external signals ri, i = 1, 2. All situations

considered in Theorem 1 of [1] with their small-gain condition

are covered by Theorem 6 (i). Thus, this paper gives a new

interpretation of the 0-GAS result of [1] in terms of the

construction of Lyapunov functions. Due to (86) and (82), the

function Vcl constructed with λ1 and λ2 in the case of

lim
s→∞

σ1 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ σ2(s)
α1 ◦ ᾱ−1

1 ◦ α1(s)
= 1 (94)

increases toward infinity as x2 approaches the boundary where

V2(x2) = X2 holds for X2 := lims→∞ α2 ◦ σ̂−1
1 ◦ α̂1(s).

Indeed, limsրX2
λ2(s) = ∞ holds since (94) implies ω̂2(s) =

0 for s ∈ [σ2(∞),∞). Thus, the function Vcl is not qualified as

a Lyapunov function of 0-GAS of the interconnected system

if X2 is finite. The assumption α2(∞) = σ2(∞) in (M1)

guarantees X2 = ∞. The information about gain is not enough

to discriminate between stable and unstable behavior in the no

gap case as discussed in [1]. Indeed, the system given by (38)-

(42) on R
2
+ satisfies (M3). Although the small-gain condition

(70) is fulfilled, there exist unbounded trajectories for 0 <
p < 1. This fact justifies the assumption of (M1) ∨ (M2) in

Theorem 6 (i), and this paper gives a Lyapunov interpretation

to the no gap case.

B. Construction of ψ

Once a function ψ satisfying (85), (89) and (91), is given,

we can always select a function ν required in Theorem 6

straightforwardly. Such a desired function ψ is constructed

as follows: First, define

Q(t) =























1

m(t)−t

(

d̂(t)

b̂(t)
−1

)

, t ∈ (0, S)

1

m(S)−S

(

lim sup
s→S

d̂(s)

b̂(s)
−1

)

, t ∈ [S,R)

(95)

b̂(s) = b ◦ η−1(s), d̂(s) = d ◦ η−1(s) (96)

m(s) = τ−1
1 ◦ α ◦ η−1(s) (97)

S = lim
s→∞

η(s), R = lim
s→∞

τ−1
1 ◦ α(s)

for a real number k ∈ (0, 1), where

α(s) = α̂1 ◦ ᾱ−1
1 ◦ α1(s)

b(s) =
[

δ1 ◦ kω̂1 ◦ τ−1
1 ◦ α̂1◦ ᾱ−1

1 ◦ α1(s)
]

[δ2◦ω̂2◦σ2(s)]
d(s) =

[

σ̂1 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ τ̂2 ◦ σ2(s)
]

σ2(s)

η(s) = σ̂1 ◦ α−1
2 ◦ ᾱ2 ◦ α−1

2 ◦ τ̂2 ◦ σ2(s) .
We can always pick a non-decreasing function Q̄ : (0, R) → R

satisfying

Q̄(s) ≥ max{Q(s), 0}, ∀s ∈ (0, R) . (98)

In the case of lim sups→0Q(s) = ∞, let Q̄ be of the form

Q̄(s) =
1

∫ s

0
ξ(r)dr

, s ∈ (0, R) , (99)

and we can pick a function ξ : (0, R) → R satisfying

ξ(s) ≤ 1, 0 <

∫ s

0

ξ(r)dr ≤ 1

max{Q(s), 0}
∀s ∈ (0, R) . (100)

Then, for arbitrary C > 0 and T ∈ (0, R), define ψ by

ψ(s) = Ce

∫ s

T
Q̄(t)dt, s ∈ (0, R) (101)

ψ(s) = ψ(R), s ∈ [R,∞) . (102)

Note that (71) implies S ≤ R. It can be verified that the above

function ψ satisfies

0 < ψ(s) <∞, ∀s ∈ (0,∞) (103)

[ψ◦η(s)] d(s) ≤
[

ψ◦τ−1
1 ◦α(s)

]

b(s), ∀s∈(0,∞) . (104)

The inequality (104) corresponds to (89). The property (103)

ensures (85) and (91) in terms of ψ.

It is stressed that, when supply rates for Σi, i = 1, 2 are

given by

−αi(Vi(t, xi))+σi(V3−i(t, x3−i))+σri(|ri|)
instead of −αi(|xi|)+σi(|ui|)+σri(|ri|), all developments in

this Section VI remain valid by replacing αi and ᾱi with the

identity map, and replacing |xi| with Vi.
Remark 13: If Q(s) ≤ 0 holds for all s ∈ (0, R), the choice

Q̄(s) = 0 fulfills (98), which yields ψ(s) = C > 0. If there

exists K ∈ (−∞, 0) ∪ [1,∞) such that

sup
t∈(0,R)

tQ(t) ≤ K (105)

holds, the choice Q̄(s) = K/s yields ψ(s) = CsK . In the case

of uniform contraction where ω1 and ω2 are linear, there exist

a sufficiently large K < ∞ such that (105) holds. When we

take ψ(s) = CsK , the functions λ1 and λ2 reduce to the ones

used in earlier results [11] dealing with uniformly contractive

loop gain for ISS systems.

VII. CONCLUSIONS

This paper has proved that the nonlinear small-gain-type

condition is a necessary and sufficient stability criterion for

the stability of a family of interconnected systems consisting

of iISS subsystems. Both the necessity and the sufficiency

have been investigated from a Lyapunov perspective. A C
1

Lyapunov function can be explicitly constructed whenever the

small-gain condition is satisfied. This paper has derived a

common formula of Lyapunov functions applicable equally

to iISS and ISS systems.

We have allowed the subsystems to be unspecified so that

the exact information of their ODE models are not assumed.

Instead, the subsystems are supposed to belong to sets de-

fined by dissipation inequalities of the iISS type, which is

conformable to the idea of modeling uncertainty. This paper

has proved that the interconnection of two unspecified iISS

subsystems is guaranteed to be stable only if at least one

of the two subsystems is ISS with respect to the feedback

input. Another important result is that the nonlinear small-

gain condition is necessary for the stability of the family



APPEARED IN IEEE TRANS. AUTOMATIC CONTROL, VOL.54, NO.10, PP.2389-2404, 2009. DOI:10.1109/TAC.2009.2028980 12

of interconnected uncertain systems described by the supply

rates. Nevertheless, it is worth noting that, when ODEs of the

two merely iISS subsystems are known, an interconnection

of them may remain stable. In the theory of linear robust

control, the necessity of Lp small-gain conditions still holds

for the interconnection of a completely known subsystem and

an uncertain subsystem. This paper claims that the necessity

for such a partially known system is fragile in the nonlinear

case.

Finally, we notice that this paper does not address the

necessity of the class K∞ property of ωi’s for achieving the

iISS property of the whole interconnected system. Identifying

some necessary conditions which are more restrictive than

those in the uniform 0-GAS case but less restrictive than those

in the ISS case remains to be an interesting subject of future

study.

APPENDIX A

PROOF OF LEMMA 1

By assumption, there exist N > 1 and J > 0 such that

α∈P and σ∈K are written in the form of

α(|x|) = α̂(|x|)|x|N , σ(|u|) = σ̂(|u|)|u|J

with some functions α̂(s) and σ̂(s) which are continuous on

[0,∞). The class C
1 property of α and σ also implies that α̂

and σ̂ are C
1 in (0,∞). Pick a real number Q ≥ 1 so that

1

N
+

1

JQ
< 1

is satisfied. Let ǫ ∈ (0, ǭ]. In the case of (1/N) + (1/J) < 1,

let Q = 1 and ǫ = 0. Define θ ∈ K∞ as

θ(s) =

{

σ(ǫ) (s/σ(ǫ))
Q

, for s ∈ [0, σ(ǫ))
s , for s ∈ [σ(ǫ),∞) .

The class K function σ̃ given by σ̃(s) = θ ◦ σ(s) satisfies

σ̃(s) = σ(s) = 0 , s = 0
σ̃(s) < σ(s) , ∀s ∈ (0, ǫ)
σ̃(s) = σ(s) , ∀s ∈ [ǫ,∞) .

(106)

Define p > 1 by

1

p
= 1− 1

JQ
. (107)

Let q = JQ so that (1/p) + (1/q) = 1 holds. Define

V (x) = α(|x|) = ᾱ(|x|) = |x|N/p (108)

f(x, u) = fA(x) + fB(x, u) (109)

fA =
−µp
N

α̂(|x|)|x|N/qx, µ =
q

p
(1 + δ) + 1 (110)

fB =
p

N
(q(1 + δ)α̂(|x|))1/p(qσ̃(|u|))1/qx . (111)

Then, we have

∂V

∂x
f =

N

p
|x|Np −2xT f

= −µα̂(|x|)|x|N

+

(

p
q

p
(1 + δ)α̂(|x|)|x|N

)1/p

(qσ̃(|u|))1/q .

Applying Young’s inequality to the right-hand side, we obtain

∂V

∂x
f ≤ −

(

µ− q

p
(1 + δ)

)

α̂(|x|)|x|N + σ̃(|u|)

≤ −α(|x|) + σ(|u|)
Since q(1 + δ)− µ = δ holds, we arrive at

(1 + δ)α(|x|) = σ̃(|u|) ⇒
∂V

∂x
f = −µα(|x|) + qσ̃(|u|)
= (q(1 + δ)− µ)α(|x|) = δα(|x|)

(1 + δ)α(|x|) < σ̃(|u|) ⇒
∂V

∂x
f > (q(1 + δ)− µ)α(|x|) = δα(|x|) .

Thus, we have (46) by virtue of (106). The choice (107) of

p implies N/p > 1, so that V given by (108) is C
1. The

function fA is Lipschitz at each point in R
n due to N/q ≥ 0

and the class C
1 property of α̂ on (0,∞). The function fB

is also locally Lipschitz in x on R
n since α̂(s)1/p is C

1 on

(0,∞) and bounded on R+. To verify the local Lipschitzness

with respect to u ∈ R
m, we first obtain JQ = q from (107).

Next,

σ̃(s)1/q = σ(ǫ)1/q(σ̂(s)/σ(ǫ))Q/q|s| , ∀s ∈ [0, ǫ]

follows from σ ∈ O(> 0). This function σ̃(s)1/q is con-

tinuously differentiable in the interval (0, ǫ] since σ̂(s)Q/q is

class C
1. The function σ̃(s)1/q is also Lipschitz at zero since

Q/q > 0. The identity

σ̃(s)1/q = σ̂(s)1/q|s|J/q , ∀s ∈ [ǫ,∞)

together with q > 1 and J > 0 guarantees that σ̃(s)1/q is

C
1 at each s ∈ [ǫ,∞) due to the continuous differentiability

of σ̂(s)1/q . Hence, the function fB is locally Lipschitz at all

u ∈ R
m.

APPENDIX B

PROOF OF THEOREM 4

We first deal with S1 and S2 given by (48) and we begin

with proving (ii).

(ii) Suppose that (51) is not satisfied for each i = 1, 2. This

assumption is equivalent to

lim inf
s→∞

αi(s) <∞ ∧
lim inf
s→∞

αi(s) < lim
s→∞

σi(s) + sup
s∈R+

σri(s)

for i = 1, 2. Due to σi ∈ K and σri ∈ P0, there exist vi > 0,

wi > 0 and δi > 0 for i = 1, 2 such that

(1 + δ1)α1(s) < σ1(w2) + σr1(v1), ∀s ∈ {h11, h12, ...}
(1 + δ2)α2(s) < σ2(w1) + σr2(v2), ∀s ∈ {h21, h22, ...}

hold for some increasing sequences h1n → ∞ and h2n → ∞
satisfying h11, h21 ≥ 0, respectively. For all integers j and k
satisfying h1j ≥ w1 and h2k ≥ w2, the properties

|x1| = h1j , |x2| ≥ h2k ⇒
(1+δ1)α1(|x1|) < σ1(|x2|) + σr1(|r1|)

|x1| ≥ h1j , |x2| = h2k ⇒
(1+δ2)α2(|x2|) < σ2(|x1|) + σr2(|r2|)
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hold as long as r1 and r2 satisfy |r1| ≥ v1, |r2| ≥ v2. Lemma 1

with replacement of σ(|u|) with σi(|ui|)+σri(|ri|) guarantees

the existence of f1(x1, u1, r1), f2(x2, u2, r2): R
ni × R

mi ×
R

ki → R, C1 functions V1, V2: R
ni → R and α1, ᾱ1, α2,

ᾱ2 ∈ K∞ such that Σi ∈ Si(ni, αi, σi, σri) and

αi(|xi|) = Vi(xi) = ᾱi(|xi|) (112)

(1 + δi)αi(|xi|) < σi(|x3−i|) + σri(|ri|) ⇒
∂Vi
∂xi

fi > δiαi(|xi|)

hold for i = 1, 2. These systems Σ1 and Σ2 satisfy

|x1| = h1j , |x2| ≥ h2k ⇒ ∂V1
∂x1

f1 > δiα1(|x1|) (113)

|x1| ≥ h1j , |x2| = h2k ⇒ ∂V2
∂x2

f2 > δiα2(|x2|) (114)

for all |r1| ≥ v1, |r2| ≥ v2. Define

U(l1, l2) = {(x1, x2) ∈ R
n1 × R

n2 :

Vi(xi) ≥ ᾱi(li), i = 1, 2} . (115)

Due to (112), the pair of (113) and (114) implies that tra-

jectories starting from (x1(0), x2(0)) ∈ U(h1j , h2k) stay in

U(h1j , h2k) forever if |r1| = v1 and |r2| = v2 hold for all

t ∈ R+. The trajectories remain in U(h1j , h2k) for the same

r1 and r2 however large h1j and h2k are. This invariance

property implies that the interconnected system does not have

finite gain in terms of ISS [22].

(i) Suppose that (50) does not hold for i = 1, 2. There exist

wi, δi > 0 for i = 1, 2 such that

(1 + δ1)α1(s) < σ1(w2), ∀s ∈ {h11, h12, ...}
(1 + δ2)α2(s) < σ2(w1), ∀s ∈ {h21, h22, ...}

are satisfied for some increasing sequences h1n → ∞ and

h2n → ∞ satisfying h11, h21 ≥ 0, respectively. Lemma 1

guarantees the existence of Σi ∈ Si(ni, αi, σi), i = 1, 2,

such that (113) and (114) hold. Trajectories starting from

U(h1j , h2k) remain in U(h1j , h2k) for arbitrary h1j and h2k.

Therefore, the interconnection is not 0-GAS.

In the case of (49), by assumption there exist Mi > 1 and

Li > 0 such that αi ∈ O(Mi) and σi ∈ O(Li) hold for

i = 1, 2. Define ᾰi = αi(s
Ki) and σ̆i = σi(s

K3−i) for some

Ki > 1, i = 1, 2. Then, there exist continuous functions α̂i, σ̂i
: R+ → R+ such that

ᾰi(|xi|) = α̂i(|xi|)|xi|Ni , Ni = KiMi > 1

σ̆i(|x3−i|) = σ̂i(|x3−i|)|x3−i|Ji , Ji = K3−iLi > 0

hold for i = 1, 2. Since αi and σi are C
1, the functions α̂i

and σ̂i are also C
1 on (0,∞). Lemma 1 yields a Lipschitz

continuous time-invariant system Σi ∈ Si(ni, ᾰi, σ̆i, σri)
with Vi(xi) = |xi|Ki for each i = 1, 2. The property

Si(ni, ᾰi, σ̆i, σri) = SV i(ni, αi, σi, σri) completes the proof.

APPENDIX C

PROOF OF THEOREM 5

The following deals with (48). The technique to deal with

(49) is the same as Theorem 4.

(i): Assume αi ∈ K temporarily and let α̃i = αi, i = 1, 2.

Suppose that there exists l1 ∈ (0,∞) such that

σ1 ◦ α−1
2 ◦ σ2(l1) ≥ α1(l1) (116)

holds. Pick l2 ∈ (0,∞) so that α−1
2 ◦ σ2(l1) ≥ l2 ≥ σ−1

1 ◦
α1(l1) is satisfied. Using α2, σ1 ∈ K, we obtain α2(l2) ≤
σ2(l1) and α1(l1) ≤ σ1(l2). Suppose |r1(t)| = |r2(t)| = 0
for all t ∈ R+. Lemma 1 guarantees the existence of two

time-invariant systems Σ1 ∈ S1(n1, α1, σ1, σr1) and Σ2 ∈
S2(n2, α2, σ2, σr2) achieving (112) and

αi(|xi|) ≤ σi(|x3−i|) ⇒
∂Vi
∂xi

fi ≥ 0

for i = 1, 2. This leads to the following:

|x1| = l1, |x2| ≥ l2 ⇒ ∂V1
∂x1

f1 ≥ 0 (117)

|x1| ≥ l1, |x2| = l2 ⇒ ∂V2
∂x2

f2 ≥ 0 . (118)

Define U(l1, l2) as in (115). Due to (112), the property char-

acterized by (117) and (118) implies that trajectories starting

from x(0) ∈ U(l1, l2) remain in U(l1, l2). This invariance

contradicts the 0-GAS. Next, consider the case of αi ∈ P \K.

Suppose that

αi.1, αi.2 ∈ K, i = 1, 2

αi.1(s) ≥ αi.2(s), ∀s ∈ R+, i = 1, 2

hold. Then, if there exists l1 ∈ (0,∞) such that

σ1 ◦ α−1
2.k ◦ σ2(l1) ≥ α1.k(l1) (119)

holds for k = 1, the same l1 also satisfies (119) for k = 2.

This property implies that the negation of (53) implies the

existence of l1 ∈ (0,∞) satisfying

σ1 ◦ α̃−1
2 ◦ σ2(l1) ≥ α̃1(l1) (120)

for all α̃i ∈ K fulfilling (54). Define l2 ∈ (0,∞) satisfying

α̃−1
2 ◦ σ2(l1) ≥ l2 ≥ σ−1

1 ◦ α̃1(l1). If

α̃i(li) = αi(li), i = 1, 2 (121)

holds, the argument given above for αi ∈ K, i = 1, 2 leads

to the existence of a pair of systems whose interconnection is

not 0-GAS. Suppose that there exists l1 ∈ (0,∞) such that

α̃1(l1) < α1(l1) (122)

and (120) hold for “all” α̃i ∈ K fulfilling (54). Then, α̃1(l1) ≤
σ1(l2) holds with any α̃2 ∈ K fulfilling (54), which implies

that there exists l̄1 ∈ (l1,∞) such that α1(l̄1) ≤ σ1(l2) holds.

If (120) and

α̃2(l2) < α2(l2) (123)

hold for all α̃i ∈ K fulfilling (54), there exists l̄2 ∈ (l2,∞)
such that α2(l̄2) ≤ σ2(l1) holds. If (122) and (123) are sat-

isfied simultaneously, we have α1(l̄1) ≤ σ1(l̄2) and α2(l̄2) ≤
σ2(l̄1). Hence, the rest of the proof is the same as the case of

αi ∈ K, i = 1, 2.

(ii): Consider the case of σr1, σr2 ∈ K∞. In order to prove

the claim by contradiction, assume that (56) is violated for

all pairs of ωi ∈ K∞, i = 1, 2. First, suppose that there
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exists l1 ∈ (0,∞) such that (116) holds with all α̃i ∈ K
fulfilling (54). Then, the claim (i) proves that x = 0 is not

guaranteed to be GAS, which implies that the interconnection

is not ISS. Next, we suppose that there are no l1 ∈ (0,∞)
and no α̃i ∈ K satisfying (116) and (54). Since all pair

of ωi ∈ K∞, i = 1, 2 violate (56), there exist continuous

functions ω1, ω2 : R+ → R+ and a non-empty set Y such

that

(Id+ ω1) ◦ σ1 ◦ α̃−1
2 ◦ (Id+ ω2) ◦ σ2(s) = α̃1(s),

∀s ∈ R+ (124)

Id+ ω1, Id+ ω2 ∈ K∞

lim
s→∞

ωj(s) <∞, ∀j ∈ Y ⊂ {1, 2} (125)

are satisfied for some α̃i ∈ K fulfilling (54). The property

(125) yields

lim
s→∞

ωj ◦ σj(s) <∞ . (126)

Since σr1 and σr2 are of class K∞, there exists Rj ∈ (0,∞)
such that

lim
s→∞

ωj ◦ σj(s) ≤ σrj(|rj |), ∀s ∈ R+, ∀|rj | ≥ Rj (127)

holds for all j ∈ Y. Let l1 be a real number in (0,∞), which is

now given arbitrarily in contrast to the (i) case. Define l2(l1) =
α̃−1
2 ◦ (Id + ω2) ◦ σ2(l1) which is of class K. Due to (124),

we have α̃2(l2(l1)) = (Id+ω2) ◦ σ2(l1) and α̃1(l1) = (Id+
ω1) ◦ σ1(l2(l1)). By replacing σ with σi + σri in Lemma 1,

we obtain Σi ∈ Si(ni, α̃i, σi, σri), such that (112) and

α̃i(|xi|) ≤ σi(|x3−i|) + σri(|ri|) ⇒
∂Vi
∂xi

fi ≥ 0

hold for i = 1, 2. This leads to (117) and (118) for all

|rj | ≥ Rj , j ∈ Y and rk = 0, k ∈ {1, 2} \Y since we have

(127). Define U(l1, l2) as in (115). The inequalities (117) and

(118) imply that trajectories starting from U(l1, l2) remain in

U(l1, l2) as long as |rj(t)| ≥ Rj and rk(t) = 0 hold. Recall

that l1 is arbitrary in (0,∞), and independent of Rj . The

trajectories for the fixed input |rj(t)| = Rj < ∞ does not

leave U(l1, l2) no matter how large l1 is. This violates the

ISS property [22]. Therefore, the interconnected system Σ is

not ISS when (56) is violated for all pair of ωi ∈ K∞ and all

α̃i ∈ K fulfilling (54), i = 1, 2. Note that αi ∈ P \ K can

be handled as in (i). In the case of σri 6∈ K∞, use ωi(s) ≡ 0
and ri(t) ≡ 0. The property α̃i(li) ≤ σi(l3−i) + σri(|ri|) is

replaced by α̃i(li) ≤ σi(l3−i).

APPENDIX D

PROOF OF THEOREM 6

(ii): The logical sum of (J1), (J2), (J3) is equivalent to the

logical sum of

(N1) lim
s→∞

α2(s) = ∞ ∧
{ lim
s→∞

α1(s) = ∞ ∨ lim
s→∞

σ2(s) <∞}
(N2) lim

s→∞
α2(s) <∞ ∧ lim

s→∞
σ1(s) <∞

under the assumption (80). We first prove the claim in the

case of (N1). For notational simplicity, we use the following

notations:

ω1 = kω̂1, ω2 = ω̂2, τ2 = τ̂2, α̂2 = α2, σ̂2 = σ2

Replace σri by σ̄ri ∈ K satisfying σri(s) ≤ σ̄ri(s) for all

s ∈ R+, i = 1, 2. Due to (83), we can pick a class K∞

function τri fulfilling

ωi◦τ−1
i − δi◦ωi◦τ−1

i − τ−1
ri ∈ K∞

for each i = 1, 2. The rest of the proof does not involve σ̄ri
and τri if σri(ri) is identically zero. Define

θi(s) = ᾱi ◦ α̂−1
i ◦ τi ◦ σ̂i(s), s ∈ [0, Yi) (128)

θri(s) = ᾱi ◦ α̂−1
i ◦ τri ◦ σ̄ri(s), s ∈ [0, Yri)

Y1 = lim
s→∞

σ̂−1
1 ◦ τ−1

1 ◦ α̂1(s)

Yr1 =

{ ∞ , if lim
s→∞

α̂1(s) ≥ lim
s→∞

τr1 ◦ σ̄r1
lim
s→∞

σ̄−1
r1 ◦ τ−1

r1 ◦ α̂1(s) , otherwise

Y2 = ∞, Yr2 = ∞

for i = 1, 2. The function λ1(s) given by (81) satisfies λ1(s) >
0 for all s ∈ (0,∞) and it is non-decreasing on R+ since (85)

and (86). Define non-decreasing functions λθ1, λθr1 : R+ →
R+ by

λθ1(s) =

{

λ1 ◦ θ1(s) , s ∈ [0, Y1)
lims→∞ λ1(s) , s ∈ [Y1,∞)

(129)

λθr1(s) =

{

λ1 ◦ θr1(s) , s ∈ [0, Yr1)
lims→∞ λ1(s) , s ∈ [Yr1,∞) .

(130)

By virtue of (73), σ̂1(∞) > τ−1
1 ◦ α̂1(∞) holds if and only if

α̂1(∞) <∞. Thus,

Y1 <∞∨ Yr1 <∞ ⇒
lim
s→∞

α̂1(s) <∞ ⇒ lim
s→∞

λ1(s) <∞ (131)

follows from (81). The function λ2(s) given by (82) is a

non-decreasing function satisfying λ2(s) > 0 for all s ∈
(0,∞) under (85) and (87). Define non-decreasing functions

λθ2, λθr2 : R+ → R+ by

λθ2(s) = λ2 ◦ θ2(s), λθr2(s) = λ2 ◦ θr2(s) , s ∈ R+ .

We obtain

λ1(V1){−α̂1(|x1|) + σ̂1(|x2|) + σr1(|r1|)}
≤ −λ1(α1(|x1|))

[

ω1 ◦ τ−1
1 ◦ α̂1(|x1|)− τ−1

r1 ◦α̂1(|x1|)
]

+λθ1(|x2|)σ̂1(|x2|)+λθr1(|r1|)σ̄r1(|r1|) (132)

λ2(V2){−α̂2(|x2|) + σ̂2(|x1|) + σr2(|r2|)}
≤ −λ2(α2(|x2|))

[

ω2 ◦ τ−1
2 ◦ α̂2(|x2|)− τ−1

r2 ◦α̂2(|x2|)
]

+λθ2(|x1|)σ̂2(|x1|)+λθr2(|r2|)σ̄r2(|r2|) (133)

by combining calculations in individual cases divided by

α̂i(|xi|) ≥ τi◦σ̂i(|x3−i|), α̂i(|xi|) < τi◦σ̂i(|x3−i|), α̂i(|xi|) ≥
τri◦σ̄ri(|ri|) and α̂i(|xi|) < τri◦σ̄ri(|ri|). Thus, the inequality

(90) is fulfilled with

αcl,i(s)=λi(αi(s))
[

ωi◦τ−1
i ◦α̂i

− δi◦ωi◦τ−1
i ◦α̂i◦ᾱ−1

i ◦ αi − τ−1
ri ◦α̂i

]

(134)

σcl,i(s)=λθri(|s|)σ̄ri(|s|) (135)
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if λ1 and λ2 satisfy

λθ1(s)σ̂1(s)

≤ λ2(α2(s))
[

δ2 ◦ ω2 ◦ τ−1
2 ◦ α̂2 ◦ ᾱ−1

2 ◦ α2(s)
]

(136)

λθ2(s)σ̂2(s)

≤ λ1(α1(s))
[

δ1 ◦ ω1 ◦ τ−1
1 ◦ α̂1 ◦ ᾱ−1

1 ◦ α1(s)
]

(137)

for all s ∈ R+. Here, δi ◦ ωi ∈ K is used. Consider the

following three conditions.

σ2(s)
[

σ̂1 ◦ α−1
2 ◦ θ2(s)

] [

λθ1 ◦ α−1
2 ◦ θ2(s)

]

≤ λ1(α1(s)) [δ2 ◦ ω2 ◦ σ2(s)]
·
[

δ1 ◦ ω1 ◦ τ−1
1 ◦ α̂1 ◦ ᾱ−1

1 ◦ α1(s)
]

, s ∈ R+ (138)

[λθ1(s)] σ̂1(s) = λ2(α2(s))

·
[

δ2 ◦ ω2 ◦ τ−1
2 ◦ α̂2 ◦ ᾱ−1

2 ◦ α2(s)
]

, s ∈ [0, Y1)(139)

[λθ1(s)] σ̂1(s) ≤ λ2(α2(s))

·
[

δ2 ◦ ω2 ◦ τ−1
2 ◦ α̂2 ◦ ᾱ−1

2 ◦ α2(s)
]

, s ∈ [Y1,∞) .(140)

The pair of (139) and (140) implies (136). If (71) is are

satisfied, we have τ1◦σ̂1◦α−1
2 ◦θ2(s) ≤ α̂1(s). This inequality

together with the definition Y1 implies lims→∞ α−1
2 ◦ θ2(s) ≤

Y1. Thus, substitution of (139) into the left hand side of (138)

results in (137). Hence, the proof is completed if λi, i = 1, 2
given in (81)-(82) solve (138), (139) and (140). Combining

(81) with (82), we arrive at (139). Due to (82), (131) and the

definition of λθ1, the property (86) leads to (140). On the other

hand, from (71), (88) and (89) it follows that λ1 in (81) solves

(138). In the (N2) case, σ̂1(∞) < ∞ follows from (75). The

property (91) guarantees λi(∞) < ∞, i = 1, 2, in (81) and

(82). Define σcl,i = λi(∞)σri ∈ P0, and we do not need θri.
(i): The properties (76) and (77) allow us to define θ2 as in

(128) with Y2 = ∞. If α̂1 ∈ K∞ holds, θ1 can be defined

as in (128) with Y1 = ∞. When α̂1 6∈ K∞ and (M1) hold,

the properties (71) and (73) imply τ1 ◦ σ̂1(∞) = σ̂1(∞) =
α̂1(∞). Thus, θ1 can be defined as in (128) with Y1 = ∞.

When α̂1 6∈ K∞ and (M2) hold, the property (76) implies

σ̂1(∞) > τ−1
1 ◦ α̂1(∞) yielding λ1(∞) <∞. Although θ1(s)

defined by (128) is finite for Y1 < ∞, the function λθ1(s)
defined by (129) is finite for all s ∈ R+.
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