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Abstract—This paper gives a solution to the problem of
verifying stability of networks consisting of integral input-to-
state stable (iISS) subsystems. The iISS small-gain theorem
developed recently has been restricted to interconnections of
two subsystems. For large-scale systems, stability criteria relying
only on gain-type information that were previously developed
address only input-to-state stable (ISS) subsystems. To address
the stability problem involving iISS subsystems interconnected in
general structure, this paper shows how to construct Lyapunov
functions of the network by means of a sum of nonlinearly
rescaled individual Lyapunov functions of subsystems under an
appropriate small-gain condition.

Index Terms—Large-scale systems, Integral input-to-state sta-
bility, Nonlinear systems, Lyapunov functions, Robust stability
criteria.

I. INTRODUCTION

The notion of input-to-state stability (ISS) introduces the

concept of nonlinear gain between input and state in order

to deal with systems which do not admit finite linear gain

[1]. This notion is useful in stability and robustness analysis

of large-scale systems since system components are often

incompatible with linear-like properties. Decomposition of

a system into subsystems allowing for infinite linear gain

sometimes reduces conservativeness arising in stability and

robustness analysis [2], [3]. However, requiring bounded state

for arbitrary magnitude of input is still restrictive. For instance,

modules of biological networks, communication networks,

network computing, air traffic models and neural network

models are often not ISS. The notion of integral input-to-state

stability (iISS) is a way to remove the limitation of ISS [4], and

considering networks of iISS subsystems broadens the horizon

of stability theory. In contrast to ISS, the notion of iISS allows

us to cope with saturation mechanisms which often arise in

practical networks (see e.g., [5]–[12]). Trajectories of mere

iISS systems do not remain finite for large magnitude inputs,

i.e., the ISS nonlinear gain cannot be defined. Difficulties
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of dealing with non-ISS systems have pushed forward the

development of new theoretical tools [8], [13]–[16].

In contrast to networks of ISS systems for which a number

of small-gain-type results have become available recently, e.g.

[17]–[23], only a few attempts have been made for networks of

iISS systems. Most Lyapunov-based studies on ISS small-gain

criteria have employed the max-type construction for networks

whose Lyapunov function V is defined as the weighted max-

imum of Lyapunov functions of individual subsystems Vi:

V (x) = max
i∈{1,2,...,n}

Wi(Vi(xi)), (1)

where n is the number of subsystems in a network. This

function (1) was first employed for interconnected ISS systems

with n = 2 in [24]. The weights are represented by the

nonlinear functions Wi. In contrast, there have been only a few

results on the construction of sum-type Lyapunov functions

for networks whose Lyapunov function is defined as the

nonlinearly-weighted sum of Lyapunov functions of individual

subsystems:

V (x) =

n
∑

i=1

Wi(Vi(xi)) (2)

A problem of constructing a function of the form (2) was

posed for general networks consisting of ISS subsystems in

[23] although no solution was derived. Recently, it has been

proved in [25] that the max-type construction (1) does not

yield a Lyapunov function if the network contains subsystems

prescribed only by pure iISS properties which are not ISS1.

The sum-type construction (2) has some clear advantages

over the max-type construction since it yields smooth Lya-

punov functions directly and it is applicable to networks

involving iISS subsystems which are not ISS. Historically,

both constructions belong to the basic idea of deriving scalar

Lyapunov functions from vector Lyapunov functions [26]–

[28]. Significant contributions have been made by using linear

Wis mostly for linear systems. The class of nonlinear networks

for which the sum-type construction is solved has been limited

to trivial cases exhibiting explicit energy-type conservation or

finite linear gain systems such as finite Lp gain systems (see

, e.g., [23], [29]). It was found recently that the (nonlinearly-

weighted) sum-type construction could give Lyapunov func-

tions explicitly for feedback and cascade connection of two

iISS subsystems [14], [30], [31]. In the presence of more

than two subsystems, the technique proposed there could be

1If there exists a max-type Lyapunov function guaranteeing the stability of
all networks prescribed by given iISS dissipation inequalities of subsystems,
then all the subsystems are already ISS.
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extended to only a specific structure of networks [32], i.e.,

cactus graphs.

An attempt to tackle iISS networks was made in [33] and

their investigation agrees that new tools are needed when the

network involves non-ISS subsystems. The problem of guar-

anteeing stability of such a network remains unsolved [25]. In

[8], as a useful idea of circumventing the difficulty of tackling

the direct iISS formulation, a time embedded formulation

aiming at verifying input-to-output stability is introduced in

a trajectory-based setup. The ISS small-gain condition can

still be used for non-ISS subsystems by assuming that the

behavior of the subsystems is ISS after a transient period and

that a trajectory estimate of the network during the period is

available in a desired manner.

The purpose of this paper is to present a small-gain criterion

for networks consisting of iISS subsystems interconnected

in general graph structure. To the best of our knowledge, a

methodology leading to the construction of ISS or iISS sum-

type Lyapunov functions for general networks is presented for

the first time. Section II is dedicated to preliminaries. The

stability analysis of general iISS networks is formulated and

recast as a problem of constructing a sum-type Lyapunov

function in Section III. A solution is presented in Section

IV. Section V illustrates its mechanism through networks of

a simple structure, and provides technical keys to the main

result. Section VI gives insights into the methodology by

taking another formulation. Examples are shown in Section

VII. Section VIII contains the conclusion. Proofs are given in

the appendix. Reading the proof of Theorem 3 prior to that of

the main theorem 2 would be comfortable.

II. PRELIMINARIES

A. Notation and Convention

The symbol |x| denotes the Euclidean norm of a real vector

x∈R
n. A continuous function ω : R+ :=[0,∞)→R+ is said

to be positive definite if it satisfies ω(0)=0 and ω(s)>0 holds

for all s>0. For a positive definite function ω : R+→R+, we

write ω ∈ J if it is non-decreasing. A function ω ∈ J is said

to be of class K (written as ω ∈ K) if it is strictly increasing;

it is of class K∞ if it is of class K and unbounded. We write

ω ∈ K ∪ {0} to indicate that ω is either of class K or the

zero function. The symbol Id denotes the identity function on

R+. Composition of γ1, γ2 : R+ → R+ is written as γ1 ◦
γ2. For brevity, we adopt a nonstandard symbol for repeated

composition as
⊙n

i=1 γi = γ1 ◦ γ2 ◦ · · · ◦ γn. The symbols ∨
and ∧ denote logical sum and logical product, respectively. Let

ek for k = 1, 2, ..., n be the standard basis of Rn. Let I be an

index set such that I ⊂ {1, 2, ..., n}. We denote by PI : R
n →

R
#I the projection of the coordinates in R

n corresponding to

the indices in I onto R#I , where #I is the cardinality of I .

The anti-projection corresponding to PI is QI : R#I → R
n

defined as x ∈ R
#I 7→ (x1ei1 + . . .+ x#Iei#I

) ∈ R
n, where

x = [x1, ..., x#I ]
T and I = {i1, ..., i#I}. For a mapping M :

R
n → R

n, we use the similar notation MI,J := PI ◦M ◦
QJ . For a vector s ∈ R

n, we write sI := PI(s). For vectors

a, b ∈ R
n the relation a ≥ b is defined by ai ≥ bi for all

i = 1, . . . , n. The negation of a ≥ b is denoted by a 6≥ b, i.e.,

there exists an i ∈ {1, . . . , n} such that ai < bi. The relation

a≫ b is defined by ai > bi for all i = 1, . . . , n. The negation

a 6≫ b is the existence of an i ∈ {1, . . . , n} for which ai ≤ bi
holds. Let R+ denote the set of extended non-negative real

numbers, i.e., R+ := [0,∞]. The mapping M I,J is defined

for M : R
n

+ → R
n

+ as done on R
n
+ above. The inequalities <

and ≤ on R+ are extended to R+ with the condition ∞ ≤ ∞.

If ω is a class K∞ function, the inverse ω−1 is of class

K∞. For ω ∈ K \K∞, its inverse ω−1 is defined on the finite

interval [0, limτ→∞ ω(τ)) since the continuous function ω is

strictly increasing and ω(0) = 0. For ω ∈ K, an operator ω⊖:

R+ → R+ is defined as

ω⊖(s) = sup{v ∈ R+ : s ≥ ω(v)}.

That is, we have ω⊖(s) = ∞ for s ≥ limτ→∞ ω(τ), and

ω⊖(s) = ω−1(s) elsewhere. For ω ∈ J , the extension ω:

R+ → R+ is defined as

ω(s) := sup
v∈{w∈R+ :w≤s}

ω(v).

Using these conventions for ω, γ ∈ K, we have ω ◦ γ⊖(s) =
limτ→∞ ω(τ) for s ≥ limτ→∞ γ(τ). The identity ω⊖ =
ω−1 ∈ K holds if and only if ω ∈ K∞. It is important that,

in the case of ω ∈ K \ K∞, we have only ω ◦ ω⊖(s) ≤ s for

s ∈ R+ although ω⊖ ◦ ω(s) = s for s ∈ R+. The convention

of the “extended” inverse allows us to avoid repeating long

lists of conditions with limit expressions which are considered

many times in this paper. The convention is also equipped with

the following equivalence which allows us to get rid of writing

many similar inequalities with functions replaced in a cyclic

order [34].

Proposition 1: (a) For γ, ω ∈ K ∪ {ζ⊖ : ζ ∈ K}, the

following two properties are equivalent:

γ ◦ ω(s) ≤ s, ∀s ∈ R+, (3)

ω ◦ γ(s) ≤ s, ∀s ∈ R+. (4)

(b) For γ ∈ K∪ {ζ⊖ : ζ ∈ K} and ω ∈ J , the two properties

(3) and (4) are equivalent.

B. Terminology of Graphs

We shall introduce basic concepts of directed graphs [38].

The term “directed” is omitted when it is clear from the

context. In this paper, the vertex set and the arc set of a

directed graph G are denoted by V(G) and A(G), respectively.

A vertex is said to be isolated if it has no arcs that are either

directed towards or away from it. A self-loop is an arc that

connects a vertex to itself. A walk is a finite alternating se-

quence of vertices and connecting arcs, beginning and ending

with a vertex. The length of a walk is the number of arcs in the

sequence. A walk is said to be a closed walk if the sequence

starts and ends at the same vertex. A path is a walk that has no

repeated vertices. A cycle is a walk that starts and ends at the

same vertex but otherwise has no repeated vertices. Given a

walk u of length k, this paper employs the following notation:

|u| = k, u = (u(1), u(2), ..., u(k), u(k + 1)), (5)
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where u(i)s are the vertices of u. The starting vertex of u is

u(k+1), and the ending vertex is u(1). The arcs defining u are

indicated by the adjacent ordered pairs in the above ordered

list. An arc directed away from vertex j and directed toward

vertex i is denoted by the ordered pair (i, j). If u is a cycle

or a closed walk of length k, we have u(1) = u(k + 1). The

length of cycles and paths is larger than or equal to one. The

length of a cycle is one if and only if the cycle consists of a

self-loop. In this paper, sequences consisting of a single vertex

are referred to as neither cycles nor paths. A graph is said to

be strongly connected if for every pair of distinct vertices i
and j there is a path from vertex i to vertex j and a path

from vertex j to vertex i. A graph G is said to be a complete

directed graph if each ordered pair of vertices is connected by

an arc. A graph defined with a subset of V(G) and a subset

of A(G) is called a subgraph of G. Note that a pair of chosen

subsets of V(G) and A(G) defines a graph only if all vertices

involved in the chosen subset of A(G) belong to the chosen

subset of V(G). A subgraph of G is called a cycle graph (resp,.

a path graph) in G if it is defined by the vertices and arcs of

a single cycle (resp,. a single path) in G. A singleton graph

is such that it consists of a single vertex with no arcs. By the

length of a cycle graph (resp., a path graph) U , we mean the

length of the cycle (resp., the path) u represented by (5), and

we write |U | = k.

Let C(G) denote the set of all cycle graphs in G. Let P(G)
denote the set of all path graphs in G. Without ambiguity,

the symbol V(G) also denotes the set of all singleton graphs

contained in G. We use the notation CP(G) = C(G) ∪ P(G)
and CPV(G) = C(G) ∪ P(G) ∪ V(G) for brevity. Let I(G)
denote the set of all isolated vertices in G, and the set of

the corresponding singleton graphs. We write |U | = 0 for

U ∈ V(G). The union G1 ∪G2 of two graphs G1 and G2 is

defined by V(G1∪G2) = V(G1)∪V(G2) and A(G1∪G2) =
A(G1) ∪A(G2). By the definition of subgraphs, a graph can

be always covered by a union of its subgraphs, i.e.,

G =
⋃

U∈H

U (6)

holds for an appropriate set H of subgraphs of G. In particular,

using cycle graphs, path graphs and singleton graphs, we can

choose H = CPV(G). The covering set H achieving (6) is

not unique as multiple subgraphs belonging to a set H can

overlap each other.

III. PROBLEM FORMULATION

A. Network of iISS Systems

Consider a network Σ consisting of n subsystems Σi, i =
1, 2, ..., n where n ≥ 2. Let x = [xT1 , . . . , x

T
n ]
T ∈ R

N be the

state vector of Σ, where the state vector of each subsystem is

xi ∈ R
Ni , and N :=

∑

Ni holds. Suppose that the dynamics

of the i-th subsystem Σi is governed by

Σi : ẋi = fi(x1, . . . , xn, r), (7)

where r ∈ R
M and fi : R

N+M → R
Ni . For each

i ∈ {1, 2, ..., n}, the subsystem (7) is assumed to have a

unique maximal solution xi(t) for any given initial condition

xi(0)∈R
Ni and any locally L∞-inputs xj : R+→R

Nj , j 6= i,
and r : [0,∞)→R

M . For instance, this can be guaranteed by

local Lipschitz condition on fi. Using f = [fT1 , . . . , f
T
n ]
T :

R
N+M → R

N , the overall network Σ is written as

Σ : ẋ = f(x, r) . (8)

The knowledge of f is not assumed. Instead, this paper

assumes that a dissipation inequality of each subsystem Σi
is known as follows:

Assumption 1: For each i = 1, 2, ..., n, there exist a C1

function Vi : R
Ni → R+ and continuous functions αi ∈ K,

σi,j , κi ∈ K ∪ {0} and αi, αi ∈ K∞ such that

αi(|xi|) ≤ Vi(xi) ≤ αi(|xi|), xi ∈ R
Ni (9)

V̇i ≤ −αi(|xi|) +
n
∑

j=1

σi,j(|xj |) + κi(|r|) (10)

hold along the trajectories xi(t) for all xj ∈ R
Nj , j 6= i and

all r ∈ R
M , where σi,i ≡ 0, i = 1, 2, ..., n.

Inequality (10) is called a dissipation inequality and means

that each subsystem Σi with the inputs xj , j 6= i and r is

integral input-to-state stable (iISS), and that Vi is an iISS

Lyapunov function for the disconnected Σi [35]. A subsystem

Σi prescribed by (10) is guaranteed to be input-to-state stable

(ISS) with the inputs xj , j 6= i and r if and only if Assumption

1 can be satisfied with αi ∈ K∞ for that i [35]–[37]2. Thus,

if αi ∈ K∞, Vi is guaranteed to be an ISS Lyapunov function.

By definition [4], the set of ISS systems is a strict subset of the

set of iISS systems. The goal is to construct an iISS Lyapunov

function V (x) of the network Σ with respect to input r and

state x, and to find a condition under which such construction

is possible.

Remark 1: The function Vi is qualified as an iISS Lyapunov

function of Σi even when αi is only positive definite [35].

This paper assumes αi ∈ K which is a strict subset of

positive definite functions. It is proved in [31] that a feedback

interconnection made of iISS subsystems defined with the

dissipation inequalities (10) with σj,i ∈ K is guaranteed to

be iISS only if the function αi can be bounded from below

by a class K function. For cascade interconnections, αi ∈ K
is not necessary. Such relaxation is not covered by this paper.

Remark 2: A subsystem Σi prescribed by (10) is guaran-

teed to be ISS if and only if there exist βi, χi,j , χi ∈ K
(χi,i = 0) and a C1 function Vi : R

Ni → R+ satisfying the

implication

|xi| ≥
n
∑

j=1

χi,j(|xj |) + χi(|r|) ⇒ V̇i ≤ −βi(|xi|). (11)

The characterization (11) for subsystems referred to as the

implication formulation is used for ISS networks in [17], [19]–

[21] with some equivalent variations in the conditional |xi| ≥
∑n
j=1 χi,j(|xj |) + χi(|r|). The formulation is also called the

gain margin formulation in [20]. If subsystems are not ISS,

they cannot be defined in such an implication formulation [35].

2The existence of Vi is considered here. If Vi is fixed, the requirement
corresponding to αi ∈ K∞ for Σi to be ISS is that lims→∞ αi(s) = ∞ ∨
lims→∞ αi(s) ≥ lims→∞

∑n
j=1

σi,j(s) + κi(s).
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B. Sum-Type Lyapunov Functions

Using the functions R+ → R+ given in Assumption 1, we

define A,S,D,Λ: Rn+ → R
n
+ by

A(s) =











α1 ◦ α−1
1 (s1)

α2 ◦ α−1
2 (s2)
...

αn ◦ α−1
n (sn)











=











α1 0 · · · 0

0 α2
. . .

...
...

. . .
. . . 0

0 · · · 0 αn





















α−1
1 (s1)
α−1
2 (s2)

...

α−1
n (sn)











S(s)=

















∑

j

σ1,j◦ α
−1

j (sj)

∑

j

σ2,j◦ α
−1

j (sj)
...∑

j

σn,j◦ α
−1

j (sj)

















=











0 σ12 · · · σ1,n
σ21 0

. . .
...

...
. . .

. . . σn−1,n

σn,1 · · · σn,n−1 0





















α−1
1 (s1)
α−1
2 (s2)

...

α−1
n (sn)











D(s) =









s1 + δ1(s1)
s2 + δ2(s2)

...

sn + δn(sn)









, Λ(s) =









λ1(s1)
λ2(s2)

...

λn(sn)









,

where s = [s1, s2, ..., sn]
T ∈ R

n
+. Note that the right-hand

side of the definitions of A and S are not matrix operations

since the entries are functions. The matrix-like representation

helps us see the structure. Indeed, A, D and Λ have the same

diagonal structure while S is not diagonal. The functions λi
and δi have yet to be determined. The following is a result in

[25].

Theorem 1: Suppose that there exist continuous functions

λi : R+ → R+ and class K∞ functions δi, i = 1, 2, ..., n,

such that

λi(s) > 0, ∀s ∈ (0,∞), i = 1, 2, ..., n (12)
∫ ∞

0

λi(s)ds = ∞, i = 1, 2, ..., n (13)

{ lim
s→∞

αi(s) = ∞ ∨ lim sup
s→∞

λi(s) <∞}, i=1, 2, ..., n

(14)

Λ(s)T [−D−1◦A(s) + S(s)] ≤ 0, ∀s ∈ R
n
+ (15)

hold. Then the network Σ is iISS with respect to input r and

state x. If both

αi ∈ K∞, i = 1, 2, ..., n (16)

lim inf
s→∞

λi(s) > 0, i = 1, 2, ..., n (17)

are satisfied additionally, then the network Σ is ISS. Further-

more, an iISS (ISS) Lyapunov function is

V (x) =

n
∑

i=1

∫ Vi(xi)

0

λi(s)ds . (18)

In this paper, the form (18) is referred to as the sum-type

construction of Lyapunov functions. This sum form is the

key to the success in constructing a Lyapunov function of

the overall network involving non-ISS subsystems [25]. This

paper constructs Λ explicitly, i.e. the functions Wi in (2) are

computed explicitly in the next section.

Σ1

Σ2

Σ3Σ4

Σ5

✍

✌
✲

⑥

⑦

✌ s

✲

1

2

34

5
✍

✌
✲

⑥

⑦

✌ s

✲

σ̂1,2
σ̂2,1

σ̂2,5

σ̂4,1

σ̂3,5
σ̂3,2

σ̂2,3

σ̂3,4

α̂⊖
1

α̂⊖
5 α̂⊖

2

α̂⊖
3α̂⊖

4

(a) Network Σ. (b) Weighted graph G.

Fig. 1. An example of a general network.

IV. GENERAL NETWORKS: MAIN RESULT

A. A Solution

This section presents a main result which gives a solution

Λ(s) to the problem formulated in Theorem 1. In this paper,

we let G denote the directed graph of the network Σ. The

vertices of G are the subsystems Σi. The arcs are the signal

flows between the subsystems. Thus, V(G) = {1, 2, ..., n}. We

have (i, j) ∈ A(G) if and only if σi,j 6= 0. The zero-nonzero

“structure” of S(s) corresponds to the adjacency matrix of G.

The graph G has no self-loop. In order to associate the network

Σ with a weighted directed graph, for any U ∈ CPV(G) let

JU ∈ R+ be a number such that

G =
⋃

W∈{U∈CPV(G): JU 6=0}

W . (19)

Thus, the set of non-zero JU s defines a covering H ⊆
CPV(G) of the graph G in (6). The mappings J : CPV(G) →
R+ represent not only the non-uniqueness of the covering H,

but also allow us to weight each subgraph in H. We write

JU instead of J(U) for brevity. For a set of JU ∈ R+,

U ∈ CPV(G), picked arbitrarily to fulfill (19), we can always

compute di > 0 and di,j > 0 for i ∈ V(G) and (i, j) ∈ A(G)
such that

1 = di
∑

U∈{W∈CPV(G):V(W )∋i}

JU , ∀i ∈ V(G) (20)

1 = di,j
∑

U∈{W∈CP(G):A(W )∋(i,j)}

JU , ∀(i, j) ∈ A(G) . (21)

Now, define α̂i ∈ K and σ̂i,j ∈ K \ {0} for i, j = 1, 2, ..., n
as

α̂i(s) = diαi(s), σ̂i,j(s) =

{

di,jσi,j(s) , (i, j) ∈ A(G)
0 , (i, j) 6∈ A(G) .

(22)

The covering (19) decomposes the problem formulated in

Theorem 1 into cycle graphs, path graphs and singleton graphs.

However, in (15), the functions λi interlace multiple subgraphs

in the set H. The parameters JU determines whether the sum

is taken along a particular subgraph U in (15) and how large

its contribution to (15) is. We define the weight of the arc

(i, j) of G as the function σ̂i,j . We also define the weight of

vertex i as the function α̂⊖
i . An example of a general network

and its vertex-arc-weighted directed graph are illustrated in

Fig.1. Due to the non-uniqueness of JU in achieving (19), the

weighted graph is not uniquely determined from the network
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Σ. The solution in Theorem 1 depends on the choice of JU
through (22).

Using the next lemma, we build a weighted complete

directed graph with self-loops from G by adding fictitious arcs

and weights.

Lemma 1: Consider α̂i ∈ K, σ̂i,j ∈ K ∪ {0}, σ̂i,i = 0 and

αi, αi ∈ K∞, i, j = 1, 2, ..., n, satisfying

{

lim
s→∞

α̂j(s)=∞ ∨ lim
s→∞

n
∑

i=1

σ̂i,j(s)<∞
}

, j = 1, 2, ..., n.

(23)

Suppose that there exist ci > 1, i = 1, 2, ..., n such that

|U |
⊙

i=1

α−1
u(i)◦ αu(i) ◦ α̂⊖

u(i)◦ cu(i)σ̂u(i),u(i+1)(s) ≤ s, ∀s∈R+

(24)

holds for cycles of all U ∈C(G). Let τi be such that

1 < τi < ci, i = 1, 2, ..., n (25)

is satisfied. Then there exist functions Fi,j ∈ J , i, j =
1, 2, ..., n, satisfying

Fi,j(s) ≥

max

{

max
1≤ q ≤n

q 6= i,q 6= j

Fi,q ◦ α−1
q ◦ αq ◦ α̂⊖

q ◦ τqFq,j(s), σ̂i,j(s)
}

,

∀s∈R+, i, j=1, 2, ..., n (26)

α−1
i ◦ αi ◦ α̂⊖

i ◦ ciFi,i(s) ≤ s, ∀s ∈ R+, i = 1, 2, ..., n (27)

lim
s→∞

Fi,j(s) <∞ ∨ lim
s→∞

max

{

max
1≤ q ≤n

q 6= i,q 6= j

Fi,q ◦ α−1
q ◦ αq ◦ α̂⊖

q ◦ τqFq,j(s), σ̂i,j(s)
}

= ∞,

i, j = 1, 2, ..., n (28)
{

lim
s→∞

α̂j(s) = ∞ ∨ lim
s→∞

n
∑

i=1

Fi,j(s) <∞
}

, j=1, 2, ..., n.

(29)

Assumption (23) guarantees that the functions Fi,j(s) do

not attain ∞ for finite s ∈ R+. Given Fi,j ∈ J for all pairs

(i, j), i, j = 1, 2, ..., n, we can define a weighted complete

directed graph with self-loops. The weight functions Fi,j are

assigned to individual arcs connecting all possible pairs in

V(G). Arcs that are not present in the original graph G will

be called fictitious arcs. The function Fi,j replaces the original

weight σ̂i,j if the arc (i, j) exists in the original graph G.

The rearrangement of weights to define the complete graph

is illustrated by Fig.2. This rearrangement allows us to obtain

the functions λi achieving (15). The weights Fi,i of self-loops

are not used explicitly in the expression of λi, and only the

existence of Fi,i ∈ J fulfilling (27) is essential.

Theorem 2: Consider αi ∈ K, σi,j ∈ K∪{0}, σi,i = 0 and

αi, αi ∈ K∞, i, j = 1, 2, ..., n, satisfying

{

lim
s→∞

αj(s)=∞ ∨ lim
s→∞

n
∑

i=1

σi,j(s)<∞
}

, j = 1, 2, ..., n.

(30)

Define α̂i ∈ K and σ̂i,j ∈ K∪{0}, with di, di,j > 0 for i, j =
1, 2, ..., n as in (20)-(22). Suppose that there exist ci > 1,

i = 1, 2, ..., n such that (24) holds for cycles of all U ∈C(G).
Let τi and ψ ≥ 0 be such that (25) and

(

τi
ci

)ψ

≤ τi − 1, i = 1, 2, ..., n. (31)

Pick Fi,j ∈ J , i, j = 1, 2, ..., n, such that (26)-(29) are

satisfied. Define λi ∈ J , i=1, 2, ..., n, by

λi(s) =

[

1

τi
α̂i(α

−1
i (s))

]ψ
∏

j∈V(G)−{i}

[

Fj,i(α
−1
i (s))

]ψ+1
. (32)

Let νi: (0,∞) → R+, i = 1, 2, ..., n, be continuous functions

satisfying

0 < νi(s) <∞, s ∈ (0,∞) (33)

lim
s→∞

α̂i(s) = ∞ ∨ lim
s→∞

νi(s) <∞ (34)

λ̄i(s)νi(s) : non-decreasing and continuous for s∈(0,∞)
(35)

and

νu(j) ◦ αu(j) ◦ α̂⊖
u(j) ◦ τu(j)σ̂u(j),u(j+1)(s) ≤

(

cu(j+1)

τu(j+1)

)ψ

(τu(j+1) − 1)νu(j+1) ◦ αu(j+1)(s),

∀s ∈ (0,∞), j = 1, 2, ..., |U | (36)

for cycles of all U ∈ C(G). Then non-decreasing continuous

functions λi : R+ → R+, i = 1, 2, ..., n, defined by

λi(s) = λi(s)νi(s), s ∈ (0,∞), i = 1, 2, ..., n (37)

λi(0) = lim
s→0+

λi(s)νi(s) (38)

achieve (12)-(15) and (17) with δi(s) = bis, i = 1, 2, ..., n,

for some bi > 0.

By virtue of the convention of α̂⊖
i and Proposition 1,

condition (24) is invariant under cyclic shifting of vertices. To

obtain (24), the constants ci cannot be arbitrarily large. It is

stressed that, for any choice of constants ci > 1 satisfying (24),

the constants τi, ψ satisfying (25) and (31) and the functions

νi, i = 1, 2, ..., n, satisfying (33)-(36) always exist and can be

chosen easily (see Subsection IV-B for νi). The set of functions

λi given in (37) yields an iISS Lyapunov function V in the

form of (18). Theorem 2 demonstrates that the collection of

the inequalities in (24) is a sufficient condition for iISS of the

network Σ. The sufficient condition imposes the small-gain

property (24) on all cycles in the “original” graph G.

It is verified easily that the small-gain condition (24) with

ci > 1 implies the existence of an integer i ∈ {1, 2, ..., |U |}
satisfying

lim
s→∞

α̂u(i)(s)=∞ ∨ lim
s→∞

α̂u(i)(s)> lim
s→∞

σ̂u(i),u(i+1)(s)

(39)

for each cycle of U ∈ C(G). Due to (22), we obtain the

existence of an i ∈ {1, 2, ..., n} satisfying

lim
s→∞

αi(s) = ∞ ∨ lim
s→∞

αi(s) > lim
s→∞

n
∑

j=1

σi,j(s). (40)
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(a) Computing a weight F3,1

of a fictitious arc.
(b) Complete graph with Fi,j .

Fig. 2. Rearrangement of weights to obtain a fictitious complete graph.

Hence, condition (24) implies that at least one subsystem Σi
should be ISS with respect to the combined input from the

other subsystems. This fact conforms to a necessity condition

derived in [34] for the stability of iISS networks. It is empha-

sized that a network can be iISS in the presence of multiple

non-ISS systems [34] and such cases are encompassed by

(24). For instance, examples in Section VII have two iISS

subsystems which are not ISS and share the same cycle.

Condition (30) can be proved to be necessary as long as

the sum-type Lyapunov function (2) is employed as an iISS

Lyapunov candidate for the entire network Σ unless we restrict

the influence of disturbances r ,i.e., κi. Indeed, the following

is proved:

Proposition 2: Given αi ∈ K, σi,j ∈ K∪{0} and κi ∈ K∞,

i, j = 1, 2, ..., n, suppose that there exists an iISS Lyapunov

function with respect to input r and state x in the form of

(2) for every Σ satisfying Assumption 1 3. Then property (30)

holds.

B. Remarks

JU : In view of (24), to achieve (19), there are better

choices than {JU 6= 0 ⇔ U ∈ CPV(G)} implying

H = CPV(G) in (6). Properties (20) and (21) yield4 1/di =
Ji +

∑

(i,j)∈A(W ) 1/di,j , where Ji is for the singleton graph

of vertex i. Taking (24) into account, Ji = 0 is preferable

unless i ∈ I(G). The value Ji > 0 does not influence

(24) if vertex i is isolated. If two distinct cycle graphs U1

and U2 share a vertex, the choice JU1
≥ JU2

> 0 reduces

constraint (24) for the cycle of U1 relatively to U2. The choice

H = {W ∈ P(G) : |W | = 1} ∪ I(G) gives a one-to-

one correspondence between JU , U ∈ H − I(G) and di,j ,
(i, j) ∈ A(G). If one wants to reduce complexity, one may

use JU = 1 for all U ∈ H = C(G) ∪ Q(G) ∪ I(G) defined

3To make sure that the functions fi’s are locally Lipschitz, it suffices to
assume that αi and σij are continuously differentiable on (0,∞) and satisfy
αi ∈ O(> 1) and σij ∈ O(> 0) for i, j = 1, 2, ..., n, j 6= i. For ω ∈
K ∪ {0}, we write ω ∈ O(> L) with a non-negative number L if there
exists a positive number K > L such that lim sups→0+ ω(s)/sK <∞. See
[30], [34].

4when vertex i is not the starting vertex of any path graph in H. This
footnote was missing on p.1197 of the TAC publication.

with

Q(G) :=

{

W ∈ P(G) :

A(W ) ∩ A(W̃ ) = ∅, ∀W̃ ∈ C(G)
A(W ) 6⊂ A(Ŵ ), ∀Ŵ ∈ P(G)− {W}

}

,

and JU = 0 otherwise. This is a way to reduce the number of

non-zero JU s.

Fi,j : The functions Fi,j , i 6= j, can be computed by

evaluating arcs with σ̂p,qs and vertices with α̂⊖
p s in all paths

from j to i in G. We do not have to evaluate walks which are

not paths. The functions Fi,i can be computed by evaluating

σ̂p,qs and α̂⊖
p s along all cycles starting and ending at i. In fact,

the proof of Lemma 1 shows that (26)-(29) are satisfied by

Fi,j(s) = max
u∈CP(i,j)

σ̂u(1),u(2)◦
|u|
⊙

i=2

α−1
u(i)◦ αu(i) ◦ α̂⊖

u(i) ◦ τu(i)σ̂u(i),u(i+1)(s),

i, j = 1, 2, ..., n, (41)

where CP(i, j) denotes the set of all paths and cycles from

vertex j to vertex i of G.

νi : Since we have (31), the simplest choice of continuous

functions νi : (0,∞) → R+, i = 1, 2, ..., n satisfying (33)-

(36) is ν1(s) = ν2(s) = ... = νn(s) = constant > 0. A

non-constant choice of νi, i = 1, 2, ..., n is ν ◦ Fl,i ◦ α−1
i (s)

defined with any l ∈ V(G) and any non-decreasing continuous

function ν satisfying 0 < ν(s) < ∞ for s ∈ (0,∞). Indeed,

the properties (33)-(36) follow from Fl,i ∈ J and (29). The

above examples of νis are non-decreasing functions. It is worth

noting that decreasing functions are also eligible in contrast

to the previous results [30], [32]. To see this point, consider

the network Σ which is a cycle graph and satisfies γjα̂j(s) =
σ̂i,j(s), γj > 0 and αi(s) = αi(s) = s for i = 1, 2, ..., n.

Then the choice

νi(s) = gi[α̂i(s)]
−nψ−n+1, i = 1, 2, ..., n (42)

fulfills (33)-(36) for appropriate constants gi > 0. In this case,

the functions λi, i = 1, 2, ..., n, become positive constants and

the small-gain condition is γ1γ2 · · · γn < 1.

Cascades : If G contains no cycle, the problem (15)

is always solvable. Since the small-gain condition (24) is

required for cycles only, the functions Fi,j ∈ J are guaranteed

to exist and the functions in (37) satisfy (12)-(15) and (17). It

is stressed that this holds true under the assumption of αi ∈ K,

i = 1, 2, ..., n, and (30). This fact is consistent with the n = 2
result in [31].

Small-gain conditions : A condition similar to (24) has been

developed for networks of ISS subsystems in [18]–[22]. If all

subsystems are ISS, i.e., (16), then by virtue of Theorems

1 and 2, the function V in (18) with λi in (37) is an ISS

Lyapunov function. Note that (30) is fulfilled by (16). It is

stressed that the cyclic small-gain condition in [18]–[22] and

the condition (24) in this paper are different from each other in

general for n > 2 even if Σis are restricted to ISS subsystems.

The cyclic small-gain condition is evaluated along all cycles

in a decoupled manner, while condition (24) is evaluated
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simultaneously for all the cycles. To put it another way, the

cyclic small-gain condition [18]–[22] evaluates loop gains of

cycles separately even if the cycles are overlapped. In contrast,

condition (24) is given in terms of α̂⊖
i (i.e., α̂i) and σ̂i,j which

are only portions of αi and σi,j if the cycles are overlapped.

The difference arises from variations in defining networks. See

Section VI.

ci : In (24), the constants ci − 1 describe how much the

loop gain of a cycle is smaller than the identity function in a

linear way. At the expense of some technical complexity in the

formula for λi, the small-gain condition (24) can be relaxed

into the existence of ωi ∈ K∞ satisfying

|U |
⊙

i=1

α−1
u(i)◦ αu(i)◦ α̂⊖

u(i)◦ (Id+ ωu(i)) ◦ σ̂u(i),u(i+1)(s) ≤ s,

∀s∈R+ (43)

for cycles of all U ∈ C(G). Property (24) just chooses the

linear function s+ ωi(s) = cis in (43). All the results in this

paper remain valid even if nonlinear gap functions ωi ∈ K∞

are used instead of (ci − 1)s. The formula for λi is omitted

since the reader can refer to [30].

V. CYCLE NETWORKS: THE ROLE OF THE SMALL-GAIN

CONDITION

The purpose of this section is twofold. One is to present a

formula for the solution Λ to the stability problem (15) posed

by Theorem 1 for cycle networks. The cycle network case is

more intuitive than the case of general networks. The other

is to illustrate the mechanisms to arrive at the solution to the

general network problem presented in Section IV. This section

gives a technique to embed a degree of freedom in Λ for

cycle networks. The solution given in Theorem 2 consists of

temporary solutions Λ to all cycles residing in the general

network. The degree of freedom allows us to combine these

temporary solutions to construct a single solution Λ to the

general network problem.

This section assumes that Σ forms a cycle graph of length

n, i.e., without loss of generality,

α̂i=αi, i = 1, 2, ..., n (44)

σ̂i,j=σi,j

{

6= 0 j = (i mod n) + 1
= 0 otherwise

. (45)

An example for n = 5 is shown in Fig.3(a). The next lemma

generates weighting functions Fi,j for all possible ordered

pairs of vertices of the graph G associated with the cycle

network Σ.

Lemma 2: Consider α̂i ∈ K, σ̂i,j ∈ K and αi, αi ∈ K∞,

i = 1, 2, ..., n, j = (i mod n) + 1, satisfying

{ lim
s→∞

α̂j(s)=∞ ∨ lim
s→∞

σ̂i,j(s)<∞},
j = 1, 2, ..., n, i = (j − 2 mod n) + 1. (46)

Suppose that there exist ci > 1, i = 1, 2, ..., n such that

n
⊙

i=1

α−1
i ◦ αi ◦ α̂⊖

i ◦ ciσ̂i,i+1(s) ≤ s, ∀s∈R+ (47)

holds with the notation σ̂n,n+1 = σ̂n,1. Let τi be such that

(25) is satisfied. Then there exist Fi,j ∈ J , i, j = 1, 2, ..., n,

such that

Fi,j(s) ≥ σ̂i,j(s), ∀s ∈ R+,

i = 1, 2, ..., n, j = (i mod n) + 1 (48)

Fi,j(s) ≥ Fi,q ◦ α−1
q ◦ αq ◦ α̂⊖

q ◦ τqσ̂q,j(s), ∀s ∈ R+,

i = 1, 2, ..., n, i+ 2 ≤ h ≤ i+ n,

q = (h− 2 mod n) + 1, j = (h− 1 mod n) + 1
(49)

α−1
i ◦ αi ◦ α̂⊖

i ◦ ciFi,i(s) ≤ s, ∀s ∈ R+, i=1, 2, ..., n (50)

lim
s→∞

Fi,j(s)<∞ ∨ lim
s→∞

σ̂i,j(s)=∞,

i = 1, 2, ..., n, j = (i mod n) + 1 (51)

lim
s→∞

Fi,j(s)<∞
∨ lim

s→∞
Fi,q ◦ α−1

q ◦ αq ◦ α̂⊖
q ◦ τqσ̂q,j(s)=∞,

i = 1, 2, ..., n, i+ 2 ≤ h ≤ i+ n,

q = (h− 2 mod n) + 1, j = (h− 1 mod n) + 1
(52)

and (29) hold.

The process of computing Fi,j is more intuitive than the

general network case since (48) and (49) are constructive as

illustrated in Fig.3(b). Each Fi,j is computed by induction

from Fi,i+1 then Fi,i+2 until it comes back to Fi,i. The small-

gain condition (47) makes (50) achievable when the induction

completes a cycle. The next theorem constructs λi with Fi,j ,
i, j = 1, 2, ..., n. The proposed formula for λis does not

explicitly involve Fi,i. However, achieving (50) in terms of

Fi,i is the central mechanism for guaranteeing such a set of

λis to be a solution of (15).

Theorem 3: Consider α̂i ∈ K, σ̂i,j ∈ K and αi, αi ∈ K∞,

i = 1, 2, ..., n, j = (i mod n) + 1, satisfying (46). Suppose

that there exist ci > 1, i = 1, 2, ..., n such that (47) holds. Let

τi and ψ ≥ 0 be such that (25) and (31) are satisfied. Pick

Fi,j ∈ J , i, j = 1, 2, ..., n, as in Lemma 2. Define λ̄i ∈ J ,

i = 1, 2, ..., n by (32). Let νi: (0,∞) → R+, i = 1, 2, ..., n,

be continuous functions satisfying (33)-(35) and

νi ◦ αi ◦ α̂⊖
i ◦ τiσ̂i,j(s) ≤

(

cj
τj

)ψ

(τj − 1)νj ◦ αj(s),

∀s ∈ (0,∞), j = (i mod n) + 1. (53)

Then the non-decreasing continuous functions λi : R+ → R+,

i = 1, 2, ..., n, defined by (37) and (38) achieve (12)-(15) and

(17) with (44), (45) and δi(s) = bis, i = 1, 2, ..., n, for some

bi > 0.

Combining Theorem 3 with Theorem 1, the set of functions

λi in (37) yields an iISS Lyapunov function V of the cycle

network Σ in the form of (18). In this way, the small-gain

condition (47) with the existence of ci > 1, i = 1, 2, ..., n
plays a central role as a sufficient condition for the iISS of the

cyclic interconnection. For cycle networks, it is not necessary

to use the flexibility of λi provided by νi. Indeed, the choice

νi(s) = 1, i = 1, 2..., n fulfills (33)-(35) and (53). When a

network consists of overlapping cycles, the freedom of νi pro-

vided in Theorem 3 can be utilized to make multiple λis, that

are computed independently with respect to individual cycles
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Fig. 3. Cycle network.

for the common single vertex i between those cycles, agree

with each other. Then multiple properties (15) defined with

respect to individual cycles are achieved simultaneously by

requiring all cycles to satisfy small-gain conditions. Covering

by subgraphs (19)-(21) ensures that combining individual (15)

corresponding to the cycles leads to the original problem (15)

for the general network. This is the mechanism of the solution

given in Theorem 2 for general networks.

Remark 3: Inequality (47) generalizes the iISS small-gain

condition developed for the two subsystems case [30], and the

general condition (47) includes it as a special case. However,

the formula for the λis given in Theorem 3 is different from the

one given in [30]. The new solution provides the flexibility for

adjusting the λis to cope with general structure of networks. In

[14], [30], it is proved for feedback interconnection of two iISS

subsystems that one subsystem is not required to be ISS, which

means that α̂−1
i of that subsystem does not have to be defined

on the whole of R+. Therefore, the small-gain condition using

α̂−1
i ’s becomes asymmetric since one α̂−1

i is well-defined

while the other α̂−1
i is not. The employment of α̂⊖

i ’s allows us

to write the small-gain condition in the symmetric way (47),

even in the presence of mere iISS subsystems, which contrasts

sharply with the expressions in [14], [30], [32].

Remark 4: The small-gain condition (47) requires that at

least one subsystem in the cycle network is ISS with respect

to the input from the adjacent subsystem. This requirement

is justified by a necessity result in [34]. There can be many

non-ISS subsystems in a cycle network as long as (47) holds.

Condition (47) shows that the network is stable if the “weak”

stability properties of non-ISS subsystems are compensated by

the “strong” stability properties of at least one ISS subsystem.

Section VII illustrates this fact by a cycle network containing

two non-ISS subsystems.

VI. ANOTHER FORMULATION OF SUPPLY RATES

This section shows the following two points using a dif-

ferent formulation of supply rates for subsystems Σi: 1) The

step (19)-(21) of covering by subgraphs is removed; 2) The

small-gain stability criterion is equivalently expressed by a

matrix-like condition generalizing an ISS result in [21]. We

achieve these two points by replacing Assumption 1 with the

following:

Assumption 2: For each i = 1, 2, ..., n, there exist a C1

function Vi : R
Ni → R+ and continuous functions αi ∈ K,

σi,j , κi ∈ K ∪ {0} and αi, αi ∈ K∞ such that (9) and

V̇i ≤ −αi(|xi|) + max

{

max
j∈{1,2,...,n}

σi,j(|xj |), κi(|r|)
}

(54)

hold along the trajectories xi(t) for all xj ∈ R
Nj , j 6= i and

all r ∈ R
M , where σi,i ≡ 0, i = 1, 2, ..., n.

The above assumption employs the dissipation inequality

(54) instead of (10) for each subsystem. The formulation

of type (54) in the supply rates of subsystems Σi is called

maximization aggregation in [21], while the formulation (10)

is summation aggregation. We can verify that Theorem 1 holds

true for (54) by redefining the operator S : Rn+ → R
n
+ as

S(s) =









max
j

σ1,j◦ α
−1

j (sj)

max
j

σ2,j ◦ α
−1

j (sj)
...

max
j

σn,j ◦ α
−1

j (sj)









, s ∈ R
n
+. (55)

The κi terms are absorbed by the operator D as done to obtain

(15) from (10) in [25] with the help of max{maxj σi,j , κi} ≤
maxj σi,j + κi. The graph G associated with the network

Σ is defined with V(G) and A(G). The vertices V(G) are

subsystems, i = 1, 2, ..., n. The pair (i, j) is an element of the

arc set A(G) if and only if σi,j 6= 0, i.e., not identically zero.

In the maximization formulation (54), we define the weight of

the arc (i, j) of G as the function σi,j(s). Thus, the functions

σ̂i,j in Fig.1 (b) are replaced by σi,js. We have the following.

Lemma 3: Consider αi ∈ K, σi,j ∈ K ∪ {0}, σi,i = 0 and

αi, αi ∈ K∞, i, j = 1, 2, ..., n, satisfying (30). Suppose that

there exist ci > 1, i = 1, 2, ..., n such that

|U |
⊙

i=1

α−1
u(i)◦ αu(i) ◦ α⊖

u(i)◦ cu(i)σu(i),u(i+1)(s) ≤ s, ∀s∈R+

(56)

holds for cycles of all U ∈ C(G). Let τi be such that (25)

is satisfied. Then there exist Fi,j ∈ J , i, j = 1, 2, ..., n,

satisfying

Fi,j(s)≥max

{

max
1≤ q ≤n

q 6= i,q 6= j

Fi,q ◦ α−1
q ◦ αq ◦ α⊖

q ◦ τqFq,j(s),

σi,j(s)

}

, ∀s∈R+, i, j=1, 2, ..., n (57)

α−1
i ◦ αi ◦ α⊖

i ◦ ciFi,i(s) ≤ s, ∀s ∈ R+, i = 1, 2, ..., n (58)

lim
s→∞

Fi,j(s) <∞ ∨

lim
s→∞

max

{

max
1≤ q ≤n

q 6= i,q 6= j

Fi,q ◦ α−1
q ◦ αq ◦ α⊖

q ◦ τqFq,j(s),

σi,j(s)

}

= ∞, i, j = 1, 2, ..., n (59)

{ lim
s→∞

αj(s)=∞ ∨ lim
s→∞

n
∑

i=1

Fi,j(s)<∞}, j=1, 2, ..., n.

(60)

The following is the main result in the maximization for-

mulation (54) of subsystems.

Theorem 4: Consider αi ∈ K, σi,j ∈ K ∪ {0}, σi,i = 0
and αi, αi ∈ K∞, i, j = 1, 2, ..., n, satisfying (30). Suppose

that there exist ci > 1, i = 1, 2, ..., n such that (56) holds for
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cycles of all U ∈C(G). Let τi and ψ ≥ 0 be such that (25) and

(31) are satisfied. Pick Fi,j ∈ J , i, j = 1, 2, ..., n, such that

(57)-(59) and (60) are satisfied. Define λi ∈ J , i = 1, 2, ..., n,

by

λi(s) =

[

1

τi
αi(α

−1
i (s))

]ψ
∏

j∈V(G)−{i}

[

Fj,i(α
−1
i (s))

]ψ+1
. (61)

Let νi: (0,∞) → R+, i = 1, 2, ..., n, be continuous functions

satisfying (33)-(35) and

νu(j) ◦ αu(j) ◦ α⊖
u(j) ◦ τu(j)σu(j),u(j+1)(s) ≤

(

cu(j+1)

τu(j+1)

)ψ

(τu(j+1) − 1)νu(j+1) ◦ αu(j+1)(s)

∀s ∈ (0,∞), j = 1, 2, ..., |U | (62)

for cycles of all U ∈ C(G). Then the non-decreasing con-

tinuous functions λi : R+ → R+, i = 1, 2, ..., n, defined by

(37) and (38) achieve (12)-(15) and (17) with δi(s) = bis,
i = 1, 2, ..., n, for some bi > 0.

The above theorem demonstrates that V of the form (18) is

an iISS Lyapunov function of the network Σ with input r and

state x if λis are constructed as in (61). Collective condition

(56) is sufficient for iISS of the network Σ. Compared with

Theorem 2 for the summation of supply rates, Theorem 4

directly uses αi and σi,j appearing in the supply rates of

subsystems. In other words, neither the stability criterion

(56) nor the construction of the Lyapunov function V with

(61) requires the process of covering the network graph by

subgraphs, i.e., the computation of α̂i and σ̂i,j in (20)-(22).

Theorem 4 allows some subsystems to be non-ISS. It realizes

the intuitive idea of compensating vulnerable subsystems with

constraining subsystems in feedback for the general network

topology. We are able to replace the linear functions cis in (56)

with nonlinear functions s+ωi(s) as in Subsection IV-B. For

the maximization formulation for supply rates of subsystems,

the small-gain condition (56) can be shown to be equivalent to

a matrix-like condition. This equivalence was demonstrated for

ISS subsystems and K∞ gain functions on R+ in [18], [22],

[40]. In the iISS formulation this paper employs, the network

is allowed to have multiple non-ISS subsystems which lead to

the small-gain condition (56) containing several α⊖
i which are

of neither K∞ nor K and involve R+. Define N : R
n

+ → R
n

+

by

N(s) =









α1 ◦ α⊖
1 (s1)

α2 ◦ α⊖
2 (s2)

...
αn ◦ α⊖

n (sn)









.

In the setting of the previous ISS results [22], [40] which

amount to αi ∈ K∞, i = 1, 2, ..., n, in Assumption 2, we

have A◦N(s) = s for all s ∈ R
n
+. It is, however, stressed that

admitting αi ∈ K \ K∞ implies A ◦N 6= Id on R+ although

N ◦ A = Id holds on R+. In spite of this fact, we have the

following equivalence:

Lemma 4: Let αi ∈ K, σi,j ∈ K ∪ {0}, αi, αi ∈ K∞ and

Id + δi ∈ K∞ for i, j = 1, 2, ..., n. Then the following three

properties are equivalent to one another:

D ◦ S(s) 6≥ A(s), ∀s ∈ R
n
+ \ {0} (63)

N ◦D ◦ S(s) 6≥ s, ∀s ∈ R
n
+ \ {0} (64)

S(s) 6≥ D−1 ◦A(s), ∀s ∈ R
n
+ \ {0}. (65)

Based on Lemma 4, we can verify that the small-gain

condition (56) is equivalent to the matrix-like condition (63)

with s+δi(s)=cis. This fact is stated for general δi∈K∞ as

follows:

Proposition 3: Consider αi ∈ K, σi,j ∈ K ∪ {0}, σi,i = 0,

αi, αi ∈ K∞ and δi ∈ K∞ for i, j = 1, 2, ..., n. Then the

inequality

|U |
⊙

i=1

α−1
u(i)◦ αu(i)◦ α⊖

u(i)◦ (Id+ δu(i)) ◦ σu(i),u(i+1)(s) < s,

∀s∈R+ \ {0} (66)

holds for cycles of all U ∈ C(G) if and only if (64) is satisfied.

It is worth noting that there exist δi ∈ K∞, i = 1, 2, ..., n,

such that (66) holds for cycles of all U ∈ C(G) if and only if

there exist (possibly different) δi ∈ K∞, i = 1, 2, ..., n, such

that

|U |
⊙

i=1

α−1
u(i)◦ αu(i)◦ α⊖

u(i)◦ (Id+ δu(i)) ◦ σu(i),u(i+1)(s) ≤ s,

∀s∈R+ (67)

is satisfied for cycles of all U ∈ C(G). Indeed, the strict

inequality < implies ≤ by definition. The converse can be

proved by replacing δi(s) with δi(s)/2.

The inequalities (63)-(65) can be also posed with 6≫ instead

of 6≥. To be more precise, under the assumption that the graph

G is strongly connected, there exist δi ∈ K∞, i = 1, 2, ..., n,

such that (63) holds if and only if there exist (possibly

different) δi ∈ K∞, i = 1, 2, ..., n, such that D ◦S(s) 6≫ A(s)
holds for all s ∈ R

n
+.

Remark 5: If all subsystems Σi are ISS, the existence of

βi, χi,j , χi ∈ K (χi,i=0) and a C1 function Vi : R
Ni → R+

satisfying the implication

|xi| ≥ max

{

max
j
χi,j(|xj |), χi(|r|)

}

⇒ V̇i ≤ −βi(|xi|),
(68)

is an alternative to Assumption 2 [35]–[37]. The implication

(68) is the maximization aggregation used in [21]. The im-

plication form (68) is not valid if a subsystem Σi is not

ISS. The dissipation form (54) is universally applicable to

both ISS and non-ISS subsystems. For networks consisting of

ISS subsystems described with the maximization aggregation,

the ISS of the networks is guaranteed by the satisfaction

of the cyclic small-gain condition developed in [18]–[21].

The cyclic small-gain condition is equivalent to the matrix-

like condition proposed in [21] for networks consisting of

ISS subsystems. Notice that the equivalence was proved only

for the maximization aggregation [21]. The results of this

paper allow us to generalize the equivalence to networks

involving non-ISS subsystems. When αi ∈ K∞ holds for

all i = 1, 2, ..., n, i.e., all subsystem are ISS, Theorem 1 for
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Assumption 2 ensures that the function V constructed as in

(18) with (61) is an ISS Lyapunov function of the network Σ
with input r and state x. In the ISS case, the stability condition

(56) reduces into the cyclic small-gain condition developed for

ISS subsystems in [18]–[21]. Condition (63) is presented in

[21] for ISS networks. It is stressed that the stability condition

(24) for the summation supply rates is not precisely the same

as the cyclic small-gain condition (56) (i.e., the one in [18]–

[21]) even if all subsystem are ISS. See Subsection IV-B.

VII. EXAMPLES

Example 1: Consider the network Σ consisting of four

subsystems defined with

α1(s) =
6s

s+ 1
, α2(s) = 4s, α3(s) =

2s

s+ 1
, α4(s) = 4s

σ1,2(s) = 2s, σ2,3(s) =
s

2s+ 1
, σ3,4(s) = s

σ4,1(s) =
s

s+ 1
, σ2,1(s) =

s

s+ 1
σ1,1(s) = σ1,3(s) = σ1,4(s) = σ2,2(s) = σ2,4(s) = 0

σ3,1(s)=σ3,2(s)=σ3,3(s)=σ4,2(s)=σ4,3(s)=σ4,4(s)=0

κ1(s) = κ2(s) = κ3(s) = κ4(s) = s

and αi(s) = αi(s) = s, i = 1, 2, ..., 4, in Assumption 1.

The subsystems Σ1 and Σ3 are not ISS, but iISS. We obtain

α̂1(s) = 3s/(s+ 1), α̂2(s) = 2s and σ̂1,2(s) = s by choosing

JU as

JU =

{

1 , U ∈ {(1, 2, 3, 4, 1), (1, 2, 1)}
0 , otherwise .

Here, cycles graphs are indicated by cycles. The remaining

α̂i and σ̂i,j are identical with αi and σi,j , respectively. Using

c = c1 = c2 = c3 = c4, the small-gain condition (24) with

respect to the cycles (1, 2, 3, 4, 1) and (1, 2, 1) is computed as

c4s

(48 + 6c2 − c4)s+ 48
≤ s,

c2s

(6− c2)s+ 6
≤ s,

respectively. These two conditions are satisfied by 1 < c <√
6. Together with τ = τ1 = τ2 = τ3 = τ4 = 9/4 < c, the

prerequisites of Lemma 1 are satisfied, and we obtain

F2,1(s) =
s

s+ 1
, F3,1(s) =

τs

4(s+ 1)
, F4,1(s) =

s

s+ 1

and the other functions Fi,j ∈ J in the same manner by (41).

Since with ψ = 0 condition (31) is met, we obtain

λ1(s) =
τs3

4(s+ 1)3
, λ2(s) =

τ3s3

36

λ3(s) =
τ3s3

12(2s+ 1)3
, λ4(s) =

τ3s3

2(τs+ 2)2

from (32), (37) and (38) with ν1 = ν2 = ν3 = ν4 = 1. By

virtue of Theorems 1 and 2, the above set of λis yields an

iISS Lyapunov function of Σ as (18). Hence, the network Σ
is iISS.

Example 2: Consider the cycle network consisting of four

subsystems defined with

α1(s) =
3s

s+ 1
, α2(s) = 2s, α3(s) =

2s

s+ 1
, α4(s) = 4s

σ1,2(s)=s, σ2,3(s)=
s

s+ 1
, σ3,4(s)=s, σ4,1(s)=

s

s+ 1
,

σ1,1(s)=σ1,3(s)=σ1,4(s)=σ2,1(s)=σ2,2(s)=σ2,4(s)=0

σ3,1(s)=σ3,2(s)=σ3,3(s)=σ4,2(s)=σ4,3(s)=σ4,4(s)=0

κ1(s) = κ2(s) = κ3(s) = κ4(s) = s

and αi(s) = αi(s) = s, i = 1, 2, ..., 4, in Assumption 1. The

subsystems Σ1 and Σ3 are not ISS, but iISS. In contrast to

the previous example, we have α̂i = αi and σ̂i,j = σi,j for all

i, j since the network consists of a single cycle (1, 2, 3, 4, 1).
The small-gain condition (47) is

c4s

(48− c4)s+ 48
≤ s,

and it is satisfied for 1 < c = c1 = c2 = c3 = c4 < (48)1/4.

Thus. we can use τ = τ1 = τ2 = τ3 = τ4 = 2.6 < c and

ψ = 0 for (25) and (31). The formulas (32), (37) and (38)

yield

λ1(s) =
τ3s3

32(s+ 1)3
· ν1(s), λ2(s) =

τ3s3

36
· ν2(s)

λ3(s) =
τ3s3

12(s+ 1)3
· ν3(s), λ4(s) =

τ3s3

8
· ν4(s).

Since we have γi,jα̂j(s) = σ̂i,j(s) for γi,j ≥ 0, i, j =
1, 2, ..., 4, we can render the functions λi constant by making

use of the functions νi as explained in Subsection IV-B. The

choice (42) with g1 = g4 = 3 and g2 = g3 = 1 fulfills (33)-

(36) and gives

λ1(s) =
3τ3

32 · 27 , λ2(s) =
τ3

36 · 8
λ3(s) =

τ3

12 · 8 , λ4(s) =
3τ3

8 · 64 .

By virtue of Theorems 1 and 3, an iISS Lyapunov function of

Σ is given by (18). Therefore, the network Σ is iISS.

VIII. CONCLUDING REMARKS

In this paper a constructive solution to the stability problem

of iISS networks has been presented. A new theoretical

approach had to be found since some central tools that have

been developed to successfully analyze ISS networks are not

directly applicable under the information only about supply

rates of mere iISS subsystems5. The approach taken here is

based on the sum-type Lyapunov function via graph covers

with arc and vertex weights. In contrast to the previously

available ISS theory based on the fact that suitably rescaled

individual Lyapunov functions could be combined via maxi-

mization to yield a composite ISS Lyapunov function, here

we have constructed a composite iISS Lyapunov function

essentially as a sum of rescaled individual iISS Lyapunov

functions. Notably, the sufficient condition for allowing such

5See Section I and Remark 2 for details.
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a construction is, as in the ISS case, a small-gain type con-

dition: All (suitably defined) cycles in an appropriate notion

of weighted interconnection graph have to be contractions.

This condition imposes that in each cycle there must be a

“more stable” subsystem that makes up for the “less stable”

subsystems in the cycle in a quantifiable way. The “less stable”

subsystems include iISS systems which are not ISS. We also

point out that this construction is applicable also to networks

consisting entirely of ISS subsystems, where our construction

yields a composite ISS Lyapunov function explicitly.

This paper has presented two different, but similar sta-

bility criteria corresponding to two different formulations of

subsystems given by (10) and (54). The former formulation

results in a small-gain condition required to hold for all cycles

simultaneously, while the latter leads to a small-gain condition

imposed on all cycles in a decoupled way. In other words, the

former requires a small-gain condition to hold for all cycles

resulting from a graph decomposition. The two criteria are

qualitatively the same. To be precise in a quantitative sense,

for the maximization formulation of supply rates (54), this

paper has demonstrated that the developed stability criterion

exactly reduces to the ones in [18]–[21] when subsystems are

ISS. Apart from going beyond ISS, the constructive nature of

the results in this paper is unique. The Ω-path approach based

on the max-type composite Lyapunov function pursued in [17],

[21] is constructive only in the maximization formulation of

supply rates with help of the operator Q in [8]. This paper has

presented Lyapunov functions explicitly in both maximization

and summation formulations of supply rates. In the summation

formulation, the construction procedure is not fully automatic

since we have to choose JU which influences the small-gain

condition.

There are a lot of interesting issues which are not addressed

in this paper. For example, necessary conditions of the sta-

bility of iISS networks are investigated in [33], [34], [39]

where small-gain-type conditions, matrix-like conditions and

the allowable number of non-ISS subsystems are discussed. An

attempt to link the function Λ to the Ω-path was made in [25].

The equivalence between the small-gain condition in this paper

and a matrix-like condition for the summation formulation of

supply rates was discussed for a special class of systems in

[39].

APPENDIX

A. Proof of Proposition 1

(a): Suppose that (3) holds. If γ ∈ K, the property γ⊖ ◦γ =
Id yields ω(s) ≤ γ⊖(s) for s ∈ R+. Applying γ⊖ ◦ γ = Id

to this again, we obtain (4). Next we assume that γ = ζ⊖

holds for some ζ ∈ K. Property (3) guarantees that ζ⊖ ◦ω(s)
is finite for finite s. Thus, ζ ◦ ζ⊖ ◦ ω(s) = ω(s) holds for

s ∈ R+. From (3) we obtain ω(s) ≤ ζ(s) for s ∈ R+. The

property ζ ◦ ζ⊖(s) ≤ s for s ∈ R+ yields (4). The converse is

proved by switching γ and ω. (b): For ω 6∈ K∪{ζ⊖ : ζ ∈ K}
which is not covered by (a), the converse by switching in the

above cannot be used. If γ = ζ⊖ holds for ζ ∈ K, the property

ζ⊖ ◦ ζ = Id guarantees (4) to imply (3). Next, suppose that

γ ∈ K. Property (3) holds automatically for s ≥ limτ→∞ γ(τ).

Assume s < limτ→∞ γ(τ). Since γ ◦ γ⊖(s) = s holds for

s < limτ→∞ γ(τ), we obtain ω(s) ≤ γ⊖(s) from (4). The

assumption s < limτ→∞ γ(τ) further implies γ ◦ ω(s) ≤ s.

B. Proof of Lemma 1

Suppose that (23), (24) and (25) are satisfied. Let CP(i, j)
denote the set of all paths and cycles from vertex j to vertex

i of G, and define

F̃i,j(s) = max
u∈CP(i,j)

σ̂u(1),u(2)◦
|u|
⊙

i=2

α−1
u(i)◦ αu(i) ◦ α̂⊖

u(i) ◦ τu(i)σ̂u(i),u(i+1)(s),

∀i, j = 1, 2, ..., n.

If CP(i, j) = ∅ holds for a pair i 6= j, we replace the

identically zero function σ̂i,j by a new function σ̂i,j ∈ K\K∞

for which (24) remains satisfied. Note that (24) can be always

achieved by choosing sufficiently small σ̂i,j , and that such a

new function satisfies (23). We compute the functions F̃i,j
with the new σ̂i,j . If the set of computed F̃i,j satisfies (26)-

(29) for the new σ̂i,j , the set also fulfills (26)-(29) for the

original σ̂i,j . Notice that CP(k, k) 6= ∅ holds for all k if

CP(i, j) 6= ∅ holds for all pairs i 6= j. Thus, in the remainder

of this proof, we assume CP(i, j) 6= ∅ for all i, j = 1, 2, ..., n.

Due to (23) we have σ̂i,j ◦ α−1
j ◦ αj ◦ α̂⊖

j (s) < ∞ and

σ̂i,j ◦ α−1
j ◦ αj ◦ α̂⊖

j ∈ J ∪ {0}. Thus, we have Fi,j ∈ J
for i, j=1, 2, ..., n. For each j = 1, 2, ..., n, the property

lim
s→∞

α̂j(s)=∞ ∨ lim
s→∞

n
∑

i=1

F̃i,j(s)<∞

holds since assumption (23) implies

lim
s→∞

σ̂i,j ◦ α−1
j ◦ αj ◦ α̂⊖

j (s)<∞ ∨
lim
s→∞

σ̂i,j(s) = lim
s→∞

α̂j(s) = ∞

for every pair (i, j). By virtue of (24), (25) and the definition

of F̃i,i, we have

α−1
i ◦ αi ◦ α̂⊖

i ◦ ciF̃i,i(s) ≤ s, ∀s ∈ R+, i = 1, 2, ..., n.

Let W(i, j) denote the set of all walks whose last vertex and

first vertex are i and j, respectively. The length of a walk can

be arbitrarily large. Define

F̄i,j(s) = sup
w∈W(i,j)

σ̂w(1),w(2)◦
|w|
⊙

i=2

α−1
w(i)◦ αw(i) ◦ α̂⊖

w(i) ◦ τw(i)σ̂w(i),w(i+1)(s),

∀i, j = 1, 2, ..., n.

The property

α−1
w(1)◦ αw(1) ◦ α̂⊖

w(1) ◦ τw(1)F̄w(1),w(1)(s) ≤ s, ∀s ∈ R+

(69)

holds along each closed walk w ∈ W(i, i) since (24) and

(25) are assumed for all cycles in G. Recall Proposition 1.
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The supremum in the definition of F̄i,j can be replaced by a

maximum, and we have F̄i,j = F̃i,j . We can also verify

F̄i,j(s) =

max

{

max
1≤ q ≤n

q 6= i,q 6= j

F̄i,q ◦ α−1
q ◦ αq ◦ α̂⊖

q ◦ τqF̄q,j(s), σ̂i,j(s)
}

.

Therefore, we arrive at (26)-(29) for Fi,j = F̃i,j , i, j =
1, 2, ..., n.

C. Proof of Theorem 2

First, properties λi ∈ J , (32), (33), (35) and (37) imply

(12) and (13), and the non-decreasing property of λi and

(17) follow. Since lims→∞ α̂i(s) = ∞ is equivalent to

lims→∞ αi(s) = ∞, properties (29) and (34) imply (14).

Secondly, from (26) and (27) it follows that

Fi,q ◦ α−1
q ◦ αq ◦ α̂⊖

q ◦ τqσ̂q,j(s) ≤ Fi,j(s),

i, q, j = 1, 2, ..., n, i 6= q, q 6= j. (70)

Choose an arbitrary cycle graph U ∈ C(G) and suppose that

JU 6= 0. Define

ν̃u(j)(s) =
∏

q∈V(G)−V(U)

[

Fq,u(j)(α
−1
u(j)(s))

]ψ+1

,

j=1, 2, ..., |U |. (71)

In the case of V(G) = V(U), the above definition is intended

as ν̃u(j)(s) ≡ 1. Since 0 < Fi,j(s) <∞ holds for s ∈ (0,∞),
we have 0 < ν̃i(s) <∞ for s ∈ (0,∞). The property

ν̃u(j) ◦ αu(j) ◦ α̂⊖
u(j) ◦ τu(j)σ̂u(j),u(j+1)(s) ≤

ν̃u(j+1) ◦ αu(j+1)(s), ∀s ∈ R+, j=1, 2, ..., |U |

is implied by (70). Thus, due to (31), for the cycle graph U ,

replacing νi with ν̃i, we have (33), (34) and (53) in Theorem

3 for cycle networks. It can be verified that the functions λi,
i = 1, 2, ..., n given in (37) are in the form of

λu(j)(s) = λu(j)(s)νu(j)(s) = λ̃u(j)(s)ν̃u(j)(s)νu(j)(s),

j = 1, 2, ..., |U |

λ̃u(j)(s) =

[

1

τu(j)
α̂u(j)(α

−1
u(j)(s))

]ψ

·
∏

q∈V(U)−{u(j)}

[

Fq,u(j)(α
−1
u(j)(s))

]ψ+1

, j = 1, 2, ..., |U |

for ν̃u(j) of each cycle graph U . Property (53) in Theorem 3

is guaranteed by (36). Applying Theorem 3 to all cycle graphs

U ∈ C(G) satisfying JU 6= 0, we obtain b̂i > 0, i = 1, 2, ..., n,

such that

|U |
∑

i=1

λu(i)(su(i))
[

−(Id+δ̂u(i))
−1◦ α̂u(i)◦ α−1

u(i)(su(i))

+ σ̂u(i),u(i+1)◦ α−1
u(i+1)(su(i+1))

]

≤ 0

holds with δ̂i(s) = b̂is for all such U . Next, suppose

that T is a path graph, i.e., T ∈ P(G) consisting of

t = (t(1), t(2), ..., t(|T | + 1)), such that JT 6= 0. Using the

fictitious arc defined with Ft(|T |+1),t(1), we define the fictitious

cycle

u = (u(1), u(2), ..., u(|T |+ 1), u(1))

= (t(1), t(2), ..., t(|T |+ 1), t(1)) (72)

to define a cycle graph U , and we repeat the above argument

for cycle graphs to obtain

|U |−1
∑

i=1

λu(i)(su(i))
[

−(Id+δ̂u(i))
−1◦ α̂u(i)◦ α−1

u(i)(su(i))

+ σ̂u(i),u(i+1)◦ α−1
u(i+1)(su(i+1))

]

+ λu(|U |)(su(|U |))·
[

−(Id+δ̂u(|U |))
−1◦ α̂u(|U |)◦ α−1

u(|U |)(su(|U |))
]

≤ 0.

By (20)-(22) we have

Λ(s)T
[

−D−1◦A(s) + S(s)
]

=

∑

U∈C(G)

JU

|U |
∑

i=1

λu(i)(su(i))
[

−(Id+δ̂u(i))
−1◦ α̂u(i)◦ α−1

u(i)(su(i))

+ σ̂u(i),u(i+1)◦ α−1
u(i+1)(su(i+1))

]

+
∑

T∈P(G)

JT

{ |T |
∑

i=1

λt(i)(st(i))
[

−(Id+ δ̂t(i))
−1◦ α̂t(i)◦ α−1

t(i)(st(i))

+ σ̂t(i),t(i+1)◦ α−1
t(i+1)(st(i+1))

]

+ JTλt(|T |+1)(st(|T |+1))
[

−(Id+ δ̂t(|T |+1))
−1 ◦ α̂t(|T |+1)◦

α−1
t(|T |+1)(st(|T |+1))

]

}

+
∑

Y ∈V(G)

JY λy(1)(sy(1))

{

−(Id+ δ̂y(1))
−1 ◦ α̂y(1)◦

α−1
y(1)(sy(1))

}

≤ 0

with δi(s) = δ̂i(dis)/di = b̂is since (Id+ δi)
−1(s) = (Id+

δ̂i)
−1(dis)/di. We arrive at (15).

D. Proof of Proposition 2

Define

h(x, r)=

n
∑

i=1

λi(Vi(xi))







−αi(|xi|) +
n
∑

j=1

σi,j(|xj |) + κi(|r|)







,

(73)

where λi : R+ →R+ are continuous functions. Suppose that

there exist a k∈{1, 2, ..., n} such that

lim
s→∞

αk(s) <∞ ∧ lim
s→∞

n
∑

i=1

σi,k(s) = ∞. (74)

If h(x, 0) ≤ 0 holds for all x ∈ R
N , definition (73) yields

lim inf
s→∞

λk(s) = ∞. (75)
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Since we have

h(x, r)

≥
n
∑

i=1,i6=k

λi(Vi(xi))







−αi(|xi|) +
n
∑

j=1

σi,j(|xj |) + κi(|r|)







+ λk(Vk(xk)) {κk(|r|)− αk(|xk|)} , (76)

properties (74) and (75) imply that

h(x, r) ≤ β(|r|), ∀(x, r) ∈ R
N × R

M (77)

cannot be achieved by any continuous function β : R+ → R+.

Using the technique presented in [34], we can construct a net-

work Σ and Vi’s satisfying (9) and (10) such that V̇ = h(x, r),
∀(x, r) ∈ [ǫ,∞)N × R

M is satisfied along the trajectories of

Σ for an arbitrarily given constant ǫ > 0. Since (77) is not

achievable, no function V in the form of (2) can be an iISS

Lyapunov function, where the functions λi’ are the derivatives

of the functions Wi in (2).

E. Proof of Lemma 2

The claim is proved by defining, for each i = 1, 2, ..., n,

Fi,j(s) = σ̂i,j(s), j = (i mod n) + 1

Fi,j = Fi,q ◦ α−1
q ◦ αq ◦ α̂⊖

q ◦ τqσ̂q,j(s)
i+2 ≤ h ≤ i+n, q = (h−2 mod n) + 1

j = (h−1 mod n) + 1,

and verifying (48)-(52) and (29).

F. Proof of Theorem 3

Properties λi ∈ J , (32), (33), (35) and (37) yield (12), (13)

the non-decreasing property of λi and (17). Property (14) is

implied by (29), (32), (34) and (37). Let

θi(s) = αi ◦ α̂⊖
i ◦ τiσ̂i,j(s)

=

{

αi ◦ α̂−1
i ◦ τiσ̂i,j(s) if lim

ι→∞
α̂i(ι) > τiσ̂i,j(s)

lim
ι→∞

αi(ι) otherwise ,

for i = 1, 2, ..., n and j = (i mod n) + 1. By definition we

have

α̂i ◦ α−1
i ◦ θi(s) =

{

τiσ̂i,j(s) if lim
ι→∞

α̂i(ι) > τiσ̂i,j(s)

lim
ι→∞

α̂i(ι) otherwise

≤ τiσ̂i,j(s). (78)

Define bi, ǫi > 0 by

bi=
τi

ǫi(τi−1)+1
−1, ǫi =

τi
ci
, i = 1, 2, ..., n.

Combining the two cases α̂i(α
−1
i (si)) > τiσ̂i,j(α

−1
i (sj)) and

α̂i(α
−1
i (si)) ≤ τiσ̂i,j(α

−1
i (sj)) yields

λi(si)

(

− 1

1+bi
α̂i(α

−1
i (si)) + σ̂i,j(α

−1
i (sj))

)

≤ −
(

1

1+bi
− 1

τi

)

λi(si)α̂i(α
−1
i (si))

+ λi(θi(α
−1
i (sj)))σ̂i,j(α

−1
i (sj)),

since λi is non-decreasing. Notice that, due to (14), the value

of λi(θi(s))σ̂i,j(s), i = 1, 2, ..., n, is finite for all s ∈ R+.

The choice δi(s) = bis implies that (15) holds for (44) and

(45) if λi, i = 1, 2, ..., n satisfy

λi(θi(s))σ̂i,j(s) ≤ ǫj ·
τj−1

τj
λj(αj(s))α̂j(α

−1
j (αj(s))),

∀s ∈ R+, i = 1, 2, ..., n, j = (i mod n) + 1. (79)

Pick i∈V(G)= {1, 2, ..., n} and define j = (i mod n) + 1.

Using (32), (37) and (38), we obtain

λi(θi(s))σ̂i,j(s)

≤ νi(θi(s)) [σ̂i,j(s)]
ψ+1

∏

q∈V(G)−{i}

[

Fq,i(α
−1
i (θi(s)))

]ψ+1

≤ νi(θi(s)) [σ̂i,j(s)]
ψ+1

∏

q∈V(G)−{i}

[Fq,j(s)]
ψ+1

= νi(θi(s)) [σ̂i,j(s)]
ψ+1

[Fj,j(s)]
ψ+1

∏

q∈V(G)−{i,j}

[Fq,j(s)]
ψ+1

.

(80)

Here, the first and second inequalities make use of (78) and

(49), respectively. We also obtain

ǫj ·
τj−1

τj
λj(αj(s))α̂j(α

−1
j (αj(s)))

= ǫj(τj−1) · νj(αj(s)) [Fi,j(s)]ψ+1 ·
[

1

τj
α̂j(α

−1
j (αj(s)))

]ψ+1
∏

q∈V(G)−{i,j}

[Fq,j(s)]
ψ+1

. (81)

From (50) and α̂i ◦ α̂⊖
i (s) ≤ s for s ∈ R+, we obtain

[Fj,j(s)]
ψ+1 ≤

(

τj
cj

)ψ+1[
1

τj
α̂j(α

−1
j (αj(s)))

]ψ+1

, ∀s∈R+.

From (31) it follows that (τj/cj)
ψ+1 ≤ ǫj(τj − 1). With the

help of (25), (48) and (53) applied to (80) and (81), we arrive

at (79) for each i = 1, 2, ..., n. This completes the proof.

G. Proof of Lemma 3

Removing hats from α̂i and σ̂i,j in Lemma 2, we obtain

Lemma 3.
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H. Proof of Theorem 4

From the definition (55) we obtain

Λ(s)T
[

−D−1◦A(s) + S(s)
]

=

∑

U∈C(G)

K(U, s)

|U |
∑

i=1

λu(i)(su(i))
[

−(Id+ δu(i))
−1◦ αu(i)(su(i))

+ σu(i),u(i+1)(su(i+1))
]

+
∑

T∈P(G)

K(T, s)

{ |T |
∑

i=1

λt(i)(st(i))
[

−(Id+δt(i))
−1◦ αt(i)(st(i))

+ σt(i),t(i+1)(st(i+1))
]

+K(T, s)λt(|T |+1)(st(|T |+1))
[

−(Id+ δt(|T |+1))
−1◦

αt(|T |+1)(st(|T |+1))
]

}

+
∑

Y ∈V(G)

K(Y, s)λy(1)(sy(1))

{

−(Id+δy(1))
−1 ◦ αy(1)(sy(1))

}

(82)

for all s = [s1, s3, ..., sn]
T ∈ R

n
+, where the mappings

K(Z, s) : CPV(G) × R
n
+ → {0, 1} are boolean-valued and

satisfy6

G =
⋃

s∈Rn
+

⋃

W (s)∈{Z∈CPV(G): K(Z,s)=1}

W (s) .

Each K(Z, s) depends on s since S(s) varies with s. In

other words, for each s ∈ R
n
+, only one of {σi,j(sj) : j =

1, 2, ..., n} is attained in the maximization (55). As in the case

of summation supply rates, we apply the single cycle formula

to each cycle graph U ∈ C(G) to compute λ̃u(j) for j ∈ V(U)
achieving

|U |
∑

i=1

λ̃u(i)(su(i))
[

−(Id+δu(i))
−1◦ αu(i)◦ α−1

u(i)(su(i))

+ σu(i),u(i+1)◦ α−1
u(i+1)(su(i+1))

]

≤ 0.

For each path graph T ∈ P(G), we can use Ft(|T |+1),t(1) to

define a cycle graph U as in (72) to which we apply the single

cycle formula to compute λ̃u(j). Finally, we obtain (12)-(15)

and (17) for λi’given by (37), (38) and (61) by matching λ̃j
computed for different cycles to each other with the help of

ν̃j as in the proof of Theorem 2.

I. Proof of Lemma 4

Suppose that (63) is true. Then for each s ∈ R
n
+ \{0}, there

exists a k ∈ {1, 2, ..., n} such that [D ◦ S(s)]k < [A(s)]k =
αk ◦ α−1

k (sk). By αk ∈ K∞ and α⊖
k which is continuous

and strictly increasing on [0, limτ→∞ αk(τ)), we have αk ◦
α⊖
k ◦ [D ◦ S(s)]k < αk ◦ α⊖

k ◦ αk ◦ α−1
k (sk) = sk. We arrive

at (64). Next, suppose that (64) is true. Then for each s ∈
R
n
+ \ {0}, there exists a k ∈ {1, 2, ..., n} such that α⊖

k ◦ [D ◦
S(s)]k < α−1

k (sk). This property together with αk ∈ K∞

6There was a typo in the next equation on p.1205 of the TAC publication.

implies limτ→∞ αk(τ) > [D ◦ S(s)]k. The definition of α⊖
k

yields αk ◦ α⊖
k ◦ [D ◦ S(s)]k = [D ◦ S(s)]k < αk ◦ α−1

k (sk)
from which (63) follows. The equivalence between (63) and

(65) is straightforward from Id+ δi ∈ K∞.

J. Proof of Proposition 3

The map M := N ◦ D ◦ S : R
n

+ → R
n

+ is monotone

on R
n

+, i.e., x ≤ y implies M(x) ≤ M(y). To prove the

implication that (64) entails (66) for all U ∈ C(G), the

invariance of condition (66) with respect to index rotation

proved by Proposition 1 allows us to follow the argument in

[40, Theorem 6.4]. The converse implication is proved in [40,

Theorem 6.4] for αi ∈ K∞, i = 1, 2, ..., n. To modify the

monotonicity approach for addressing αi ∈ K \ K∞ in the

converse, define a directed graph G(s) associated with the

operator M(s) for each s ∈ R
n
+. The pair (i, j) is an element

of the arc set A(G(s)) if and only if maxk∈{1,2,...,n} σi,k(s) =
σi,j(s) 6= 0. The vertex set is defined as V(G(s)) := V(G) =
{1, 2, ..., n}. We have C(G(s)) ⊆ C(G), P(G(s)) ⊆ P(G)
and I(G) ⊆ I(G(s)). For an arbitrary U ∈ I(G(s)), from

MV(U),V(U)(sV(U)) = 0 it follows that

U ∈ I(G(s)) ∧ sV(U) 6= 0 ⇒ MV(U),V(U)(sV(U)) 6≥ sV(U).
(83)

Next, to take account of path graphs in G(s), we define

R(G(s)) :=







R : R =
⋃

T∈Ti(s)

T, i ∈ V(G)







,

where Ti(s) := {T ∈ P(G(s)) : t(|T | + 1) = i, (t(|T | +
1), j) 6∈ A(G(s)), ∀j ∈ V(G)}. We have {P(G(s)) = ∅ ⇔
R(G(s)) = ∅}. For an arbitrary graph U ∈ R(G(s)), we have

st(k) > 0 for k = 2, 3, ..., |T |+1 for all T ∈ Ti(s) composing

U . Due to the maximization in M implying exclusive con-

nection, U ∈ R(G(s)) implies Mt(|T |+1),V(U)(sV(U)) = 0 <
st(|T |+1). Hence,

U ∈ R(G(s)) ⇒ MV(U),V(U)(sV(U)) 6≥ sV(U). (84)

To consider cycle graphs in G(s), we define

B(G(s)) :=







B : B =W ∪
(

⋃

T∈PW (s)

T

)

, W ∈ C(G(s))







.

where PW (s) := {T ∈ P(G(s)) : ∃i ∈ V(W ) s.t. t(|T | +
1) = w(i)} and P∅(s) := ∅. We have {C(G(s)) = ∅ ⇔
B(G(s)) = ∅}. For each B ∈ B(G(s)), there is a unique

W ∈ C(G(s)) such that A(W ) ⊆ A(B). We assume that

(66) holds for all cycles of C(G). Suppose that a vector s ∈
R
n
+ \ {0} is given and fixed. Consider a graph U ∈ B(G(s))

containing a cycle graph Q, and set L = #V(U). Then we

have sq(i) > 0 for i = 1, 2, ..., |Q|. Take the maximization of

S in M for the given s and define Zs : R
L

+ → R
L

+ by

Zs = [N ◦D]V(U),V(U) ◦







σa(1),b(1)◦ α−1
b(1)

...
σa(L),b(L)◦ α−1

b(L)






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with appropriate a(i), b(i) ∈ V(U), i = 1, 2, ..., L such that

Zs(s) = MV(U),V(U)(s). This operator Zs is different from

MV(U),V(U) since it does not involve maximization any more.

Let p = s, and temporarily assume that MV(U),V(U)(pV(U)) ≥
pV(U) is true. Due to the monotonicity of Zs on R

L

+, we have

Z
k|Q|
s (pV(U)) ≥ pV(U) for all integers k ≥ 1. Therefore, we

obtain

0 < pq(1)

≤
[

Zk|Q|
s

(pV(U))
]

q(1)

=
[

αq(1)◦γq(1),q(2)◦γq(2),q(3)◦ · · · γq(|Q|),q(1)◦α−1
q(1)

]k

(pq(1)),

(85)

where γi,j = α−1
i ◦αi ◦α⊖

i ◦ (Id+ δi) ◦σi,j . By virtue of (66)

and Proposition 1, as k tends to infinity, the right hand side

of (85) decreases to zero. This contradicts pq(1) > 0 fixed.

Hence

U ∈ B(G(s)) ⇒ MV(U),V(U)(sV(U)) 6≥ sV(U). (86)

must hold. By virtue of the maximization in S(s) implying

exclusive connection, we obtain

{U ∈ I(G(s)) : sV(U) 6= 0} ∪ R(G(s)) ∪ B(G(s)) 6= ∅
and

U,W ∈ I(G(s)) ∪R(G(s)) ∪ B(G(s)), i ∈V(U), i ∈V(W )

⇒ U =W

for each s ∈ R
n
+ \ {0}. Therefore, properties (83), (84) and

(86) guarantee (64).
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